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Fluctuating asymmetry (FA) is a widely used measure of developmental stability.
Nearly all FA indexes estimate the variance of the frequency distribution of right-
minus-left (R-L) for a given bilateral character. Differences in these indexes among
samples are usually interpreted as reflecting differences in the level of developmental
stability. If developmental stability is the ability to correct for small, random develop-
mental perturbations of exclusively environmental origin, then a distribution of R-L,
which may include both genetically and environmentally caused asymmetries, may not
be a good measure of developmental stability. R-L distributions that depart signifi-
cantly from the statistical criteria for ideal FA (mean of zero, normal distribution) are
unsuitable as descriptors of developmental stability because a fraction of the asymme-
try variation may have a genetic basis. In addition, broad-peaked or bimodal (platykurtic)
distributions of R-L, which reveal the presence of antisymmetry, also imply genetically
based asymmetries and thus seem inappropriate as descriptors of developmental
stability. Finally, both skewed distributions and narrow-peaked, long-tailed (leptokurtic)
distributions may arise in mixed samples composed of two or more groups of individu-
als where each exhibits a different form of asymmetry and where one or more forms of
asymmetry may have a genetic basis. Statistical techniques for detecting departures
from normality and for detecting heterogeneity of variances among samples are briefly
reviewed.
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1. Introduction
1.1. Background

Fluctuating asymmetry (small, random departures
from perfect symmetry) is commonly used as a
measure of the developmental stability of bilat-
erally symmetrical morphological traits (Palmer
& Strobeck 1986, Zakharov 1989). Typically,
one or more indexes are calculated that express
fluctuating asymmetry (FA) as a variance, or an
average absolute value, of the difference between
the right and left elements of a bilateral pair (R-L)
for a sample of individuals (Palmer & Strobeck
1986). The larger the FA the lower the develop-
mental stability.

Many studies have examined variation in FA
in response to both intrinsic (genetic) and extrin-
sic (environmental) factors that might influence
developmental stability (reviewed in: (Allendorf
& Leary 1986, Palmer & Strobeck 1986,
Zakharov 1989)). Several patterns have emerged
more than once from these descriptive and ex-
perimental studies. Developmental stability ap-
pears to be reduced:

1) by increased homozygosity,

2) in hybrids between nominal species,

3) by extreme physical conditions, and

4) by pollution or declines in habitat quality.

Significantly, although some studies have found
little or no association, none have found patterns
opposite to these. Because many of these factors
reducing developmental stability correlate with
reduced fitness (Allendorf & Leary 1986),
Zakharov (1989) has suggested that FA, perhaps
together with other measures of developmental
stability, may provide a convenient summary
measure of overall population “condition” or fit-
ness.

In this paper, we wish to draw attention to
some potential difficulties associated with the
interpretation of differences in empirical esti-
mates of FA (see Palmer & Strobeck (1986) for a
discussion of methodological issues). In particu-
lar, we wish to emphasize that certain shapes of
frequency distributions of R-L may weaken or
seriously compromise the use of asymmetry
variation as a measure of developmental stability
for a particular trait. These difficulties arise where

the differences in R-L among individuals may not
be due entirely to developmental noise, which by
definition is exclusively non-genetic in origin. If
differences in R-L among individuals arise in part
from genes directly causing greater or lesser de-
partures from symmetry, then differences in
asymmetry variation among samples, no matter
how they are calculated, can no longer be inter-
preted with confidence as differences in devel-
opmental stability.

1.2. Developmental noise, developmental sta-
bility, and forms of asymmetry: processes vs.
patterns

To try to avoid ambiguity, we use the terms
developmental noise and developmental stability
as follows. Developmental noise represents the
cumulative effects of small, random develop-
mental perturbations or accidents that are ex-
clusively environmental in origin (Waddington
1957, Lewontin 1983). Developmental stability,
on the other hand, refers to the ability to correct
for these perturbations (Mather 1953, Wadding-
ton 1957, Zakharov 1989). These terms are not
the converse of each other because one (devel-
opmental noise) refers to an exclusively non-
genetic phenomenon while the other (develop-
mental stability) refers to a phenomenon that
does appear to have a genetic basis. As we use
them, both terms refer to specific developmental
processes each of which may independently in-
fluence the frequency distribution of right-minus-
left.

The three forms of bilateral asymmetry to
which we draw attention — FA, directional
asymmetry, and antisymmetry (VanValen 1962)
— are merely descriptions of identifiable pat-
terns of asymmetry variation. They refer to fre-
quency distributions of right-minus-left variation
with well defined statistical attributes (defined
below). Although they may arise as a product of
one or more developmental processes, we use
these terms exclusively to refer to the shapes of
distributions and not to the processes responsible
for generating these shapes. This is an important
distinction which sometimes is not clearly made
in studies of asymmetry variation.
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1.3. Fluctuating asymmetry as a measure of
developmental stability

FA is used to estimate the level of developmental
stability in bilaterally symmetrical organisms
based upon three intuitively appealing proposi-
tions. First, in the absence of any intrinsic (ther-
mal noise, random developmental accidents, ge-
netic predispositions towards asymmetry) or ex-
trinsic (environmental) perturbations, all indi-
viduals in a sample should be perfectly sym-
metrical. In other words, for bilaterally sym-
metrical traits the ideal state is clearly defined a
priori. Note that for traits exhibiting directional
asymmetry (DA) or antisymmetry, the ideal state
is not clearly defined a priori.

Second, biological systems cannot consist-
ently achieve perfect bilateral symmetry even
under ideal environmental conditions. Minor in-
consistencies during development will deflect
developmental trajectories away from perfect
symmetry (Waddington 1957). Hence, by chance,
one limb will become slightly larger or smaller
than its bilateral counterpart. If these deflections
are random, independent, and cumulative for each
member of a bilateral pair of characters, a fre-
quency distribution of the difference between
these right and left members for a sample of
individuals should approximate a normal distri-
bution with a mean of zero (ideal FA).

Third, biological systems have the capacity
to correct for “accidents” during development.
Hence the greater this capacity to correct back to
the ideal developmental trajectory for a particu-
lar set of environmental conditions, the lower the
variance of the difference between right and left
members of a bilateral pair (FA).

2. Difficulties in interpretation
2.1. A key assumption

The use of departures from bilateral symmetry to
estimate developmental stability depends criti-
cally upon one very important assumption: these
departures, of a particular character on a particu-
lar individual, must not be due to any genetic
predisposition towards asymmetry. In other
words, regardless of what statistical measure is

used to describe them, if departures from bilat-
eral symmetry have arisen through the action of
genes or developmental processes specifically
directing one member of a bilateral pair to become
larger than the other, then it seems to us that such
departures may not be interpreted as evidence for
reduced developmental stability.

2.2, Ideal fluctuating asymmetry

The conventional interpretation of FA as a meas-
ure of developmental stability arises as follows.
Consider the wing lengths of a sample of adult
fruit flies. For both the left and the right wing, a
frequency distribution of lengths will exist (Fig.
1a, b). Some unknown fraction of this variation
for each wing will be due to genetic differences
among individuals (solid region) and the re-
mainder will be due to the effects of environment
on wing length (stippled region). On a given
individual, of course, both the right wing and the
left wing are a product of the same genome.
Hence, if the wings are normally symmetrical,
calculating the difference between the right and
left wing cancels out any genetic effects on wing
length (Fig. 1¢). In addition, any effects on aver-
age wing length of the specific microenviron-
mental conditions experienced by an individual
fly [the creode for those conditions (Waddington
1957)] will also cancel out. This frequency dis-
tribution of R-L is thus commonly interpreted as
a product of non-genetic variation in symmetry
(Fig. 1c). It has a parametric mean of zero and
the variation is normally distributed about this
mean. These two statistical criteria define ideal FA
(VanValen 1962).

An important point we wish to emphasize
here is that if either of these two statistical crite-
ria are not met for a given distribution of R-L, one
may no longer interpret the variation in R-L as a
product of pure developmental noise. As a con-
sequence, although one may compute one or more
of the nine indexes commonly used to describe
FA (Palmer & Strobeck 1986), differences in
these computed values among samples for a given
character may no longer be attributed exclusively
to differences in developmental stability or de-
velopmental noise. Some unknown fraction of
the variation may have a genetic basis. As with
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Fig. 1. A graphical illustration of variation in fruit fly wing lengths (a,b) and ideal fluctuating asymmetry (c),
illustrating the conventional interpretation of fluctuating asymmetry. R; = size of a trait on the right side, L, = size
of the bilaterally paired trait on the left side. Here and in later figures we use a convention to represent genetic
and environmental components of bilateral variation that requires some explanation. Solid frequency distribu-
tions represent genetically induced variation, and stippled frequency distributions represent total phenotypic
variation (including developmental noise). The exclusively stippled region under the curve is intended to
represent environmentally induced variation only. Two aspects of these curves, however, are not technically
correct. First, the area under each should be the same (the area under any frequency distribution is one).
Second, if environmental variation is added to underlying genetic variation, the combined distribution should be
broader with a lower peak. We use this heuristic convention a) because we wish to emphasize that some subset
of the total phenotypic variation has a genetic basis, and b) because it avoids introducing potentially distracting
elements to the figures.

any other morphological character exhibiting
variation, one can no longer separate genetic from
environmental effects. We attempt to buttress
this argument in the next three sections.

2.3. Other “pure” forms of asymmetry

Frequency distributions of R-L will not always
be normally distributed about a mean of zero
(ideal FA, Fig. 2a). Two other types of frequency
distributions of R-L (Fig. 2b, ¢) represent funda-
mentally different types of asymmetry (VanValen
1962): directional asymmetry (DA) and anti-
symmetry. For traits exhibiting DA (Fig. 2b), the

variation of R-L is normally distributed about the
mean, but the mean of the distribution departs
significantly from zero.

Antisymmetry (Fig. 2c) presumably results from
a genetic predisposition of individuals towards
asymmetry but, within a given sample, some indi-
viduals develop a left bias while others develop a
right bias. Extreme forms of antisymmetry are
clearly bimodal, as observed in the signalling claws
of fiddler crabs (Uca) where one claw is many times
larger than the other, but where right-handed and
left-handed individuals occur with roughly equal
frequency in nearly all species (Yamaguchi 1977,
Davis 1978). Subtler degrees of antisymmetry (see
Fig. 3a below) will be apparent only as broad-
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Fig. 2. Three “pure” forms of bilateral asymmetry: a)
fluctuating asymmetry, b) directional asymmetry, and
¢) antisymmetry. See Fig. 1 for an explanation of the
convention for representing genetic and environmental
variation.

peaked, effectively unimodal (platykurtic) distribu-
tions of R-L. These subtler forms of antisymmetry
pose perhaps the greatest difficulty to studies of
developmental stability.

An important difference between these latter
two forms of asymmetry and FA (Fig. 2a) is that,
for both DA and antisymmetry, some unknown
fraction of the variation in R-L may have a ge-
netic basis (solid curves in Figs. 2b, ¢). In other
words, in these latter two forms of asymmetry,
individuals are genetically or developmentally
directed to become asymmetrical. Consequently,
for these two types of bilateral asymmetry, the
variation in R-L may no longer be a product of
pure developmental noise.

2.4. Composite distributions of more than one
form of asymmetry: skew

Up to this point, we have considered each form
of bilateral asymmetry, FA, DA, and anti-

0
(Ri-Ly)

Fig. 3. Different degrees of antisymmetry, and a pos-
sible explanation for skewed distributions of R-L vari-
ation. a) weak antisymmetry, b) strong antisymmetry,
c) a skewed distribution resulting from a mixture of
antisymmetric and directionally symmetric variation
(e.g. 3b and 3d) in a single sample, and d) directional
asymmetry. See Fig. 1 for an explanation of the con-
vention for representing genetic and environmental
variation.

symmetry, in isolation. Nothing, of course, pre-
cludes the joint occurrence of two or more forms
of asymmetry for a given character in a single
population. This possibility permits distributions
of R-L having other shapes.

A skewed distribution of R-L variation (Fig.
3¢) may result from a mixed sample where some
individuals are predisposed towards antisym-
metry (Fig. 3b) and the remainder exhibit di-
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Fig. 4. A leptokurtic distribution of R-L variation (b)
arising from a mixture of fluctuating asymmetry (a) and
antisymmetry (c) in a single sample (Leptokurtic ).
See Fig. 1 for an explanation of the convention for
representing genetic and environmental variation.

rectional asymmetry (Fig. 3d). The extent and
direction of skew will of course depend upon

a) the magnitude of both antisymmetry and DA,

b) the direction of DA, and

¢) the relative frequency of the two forms in the
mixed sample.

If both antisymmetry and DA have a genetic
basis, as seems likely, some unknown fraction of
the variation in R-L in the mixed sample will also
have a genetic basis (solid curve, Fig. 3c). Once
again, summary indexes of the variation of R-L
can no longer be interpreted as reflecting pure
developmental noise.

2.5. Composite distributions of more than one
form of asymmetry: leptokurtosis

One type of leptokurtic distribution of R-L vari-
ation (narrow-peaked, long-tailed; Fig. 4b) may

Normal, . )
High FA |

- | +
(R;-Ly)

Fig. 5. A leptokurtic distribution of R-L variation (b)
arising from a mixture of low fluctuating asymmetry (a)
and high fluctuating asymmetry (c) in a single sample
(Leptokurtic ). See Fig. 1 for an explanation of the
convention for representing genetic and environmen-
tal variation.

arise when a sample includes a mixture of two
groups of individuals one of which exhibits FA
(Fig. 4a) and the other of which exhibits anti-
symmetry (Fig. 4c). For convenience, we will
call this Type I leptokurtosis. Such a distribution
would arise only if individuals prone to anti-
symmetry made up a minority of the sample. If
individuals prone to antisymmetry formed a ma-
jority, the composite distribution of R-L would
probably be difficult to distinguish from pure
antisymmetry unless it was clearly trimodal. As
for the skewed distribution discussed above,
variation in R-L can no longer be interpreted as
pure developmental noise for this form of
leptokurtosis.

Leptokurtic distributions of R-L may arise in
two other ways. John Graham has pointed out to
us that if a sample includes a mixture of two
groups of individuals one of which exhibits low
FA (Fig. 5a) and one of which exhibits high FA
(Fig. 5¢), the joint distribution (Fig. 5b) will be



ACTA ZOOL. FENNICA Vol. 191 « Palmer & Strobeck: Fluctuating asymmetry and statistics 63

Right Side

Left Side

R;-Ly

B
Character Size ——>

Character Size —>

Skewed

Fig. 6. A leptokurtic distribution of A-L variation (right-most three graphs) arising as a product of allometry during
development (Leptokurtic lI; see text for a more complete explanation). See Fig. 1 for an explanation of the
convention for representing genetic and environmental variation.

leptokurtic (Type II leptokurtosis). Unlike Type
I leptokurtosis (Fig. 4b), all the variation in R-L
in Type II leptokurtosis would be due to devel-
opmental noise. Quantitative differences among
samples in the variance of R-L would thus reflect
average differences in developmental stability
or developmental noise. However, this would
obscure the fact that some individuals had low
developmental stability while it was higher in
others. Furthermore, variance differences among
samples could arise due to changes in the propor-
tion of the sample made up of individuals from
the high- versus the low-FA group.

Finally, a leptokurtic distribution of R-L may
also arise in a sample where the allometric growth
of a trait on one side of the body depended on the
degree to which it departed from bilateral sym-
metry early in ontogeny (Fig. 6). Consider a trait
at an early stage in development, where both the
right and left sides exhibited independent varia-
tion due exclusively to developmental noise. The
distribution of R-L at this stage would meet the
criteria for ideal FA (bottom row of panels,
Fig. 6). If, as individuals grew larger, the allo-
metric growth of the trait depended on whether it
was initially over- or under-developed relative to
the mean, then the frequency distribution of the
trait for each side would become progressively
more skewed with increasing body size (middle

and upper panels for “right side” and “left side”,
Fig. 6). If the initial over- or under-development
on each side was independent of that on the
other, then the distribution of R-L differences
would become progressively more leptokurtic
(Type III leptokurtosis; right-most three panels
Fig. 6). In view of the complexity of this mecha-
nism, we are unsure whether a Type III leptokurtic
distribution of R-L would include a genetic
component or not.

2.6. A simple algebraic representation of
asymmetry

A simple algebraic model will illustrate more
explicitly the differences between R and L for a
given bilateral trait. Following Palmer & Strobeck
(1986):

Ri= W +s5;+ (DI2)A; + at/2+ r,, and Y]
L=w+s;—(DI2)A, - a/2 + 1. (2)

where R, and L, represent the right and left mem-
bers for individual 7, and the remaining variables
are defined and explained in Table 1. They in-
clude, among others, two to represent the mean
and variance of directional asymmetry (D and ¢,
respectively), one to represent the contribution
of antisymmetry (A;) and two to represent the
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independent contribution of developmental noise
to each side (r;and [; representing the develop-
mental noise experienced by the right and left
elements respectively). This formulation thus
makes explicit what components of bilateral
variation will still be present in the difference
between R and L:

R -L=DA,+o+r,— 3)

Clearly, only if the mean directional asymmetry
(D) and the directional asymmetry variation (o)
are both zero does the difference between R and
L reflect pure developmental noise (r;and /;). Note
that, according to this formulation, a component
of directional asymmetry variation (¢;) may still
remain even if no average directional asymmetry
(D) exists. This would result from a negative
covariance between sides that would not be ap-

parent in a distribution of R; — L; — this distribu-
tion would still be normal with a mean of zero.
To the extent that this covariance has a genetic
basis, even normal distributions of R-L centered
on zero (supposedly “pure” FA) may have a
small genetic component. Because we are con-
cemned primarily with the implications of distri-
butions that depart from normality in this paper,
we will explore the full implications of this
covariance elsewhere (Palmer et al. (submitted)).

2.7. Can samples departing from ideal FA be
“corrected”?

The preceding argument has emphasized that, for
many distributions departing from ideal FA, some
fraction of the variation in R-L may have a genetic

Table 1. Components of variation of bilateral characters and their interpretation.

Mean: Average character size: (XA, + TL)/2N, where R = right, L = left and
N = number of individuals.

Population mean (u)

Variation: Not applicable.

Mean: 0.

Variation: Normal, genetic or environmental. Either genetic or environmental
effects may increase or decrease R and L equally in an individual, relative to
the population mean.

Character size variation (s)

Population directional asym- Mean: Average directional asymmetry of a population: S(R,— LYN.

metry (D) Variation: Not applicable.

Mean: A, will take the value +1 or—1 with probability pand g = 1-p respectively.
pmay vary from 0o 1. For example, when antisymmetry is absent, p=1. When
antisymmetry is present, and right- and left- biased individuals occur with
equal frequency, then p = g = 0.5. When antisymmetry is present, and right-
and left-biased individuals occur with unequal frequency, p will be greater than
or less than 0.5 depending upon whether right-biased or left-biased individuals
are more common. Hence, the mean of A, is 2p—1 with a variance of 4pq.

Antisymmetry (A)

Variation: Binomial, genetic or environmental. As noted by Palmer & Strobeck
(1986), antisymmetry may arise via two different mechanisms, either a) via a
mixture of right- and left-biased genotypes (Type | Antisymmetry), or b) via
chance or an environmental stimulus that produces right- or left- biased
phenotypes from a single genotype (Type Il Antisymmetry).

Mean: 0.

Variation: Normal, genetic.

Directional asymmetry varia-
tion ()

Mean: 0.

Variation: Normal, environmental.

Developmental noise of right
and left sides respectively (r; )
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basis (e.g. see equation 3 and the summary of distri-
bution shapes in Table 2). Hence, the variation in
R-Lis not pure developmental noise and a statistical
correction cannot eliminate this problem. A simple
graphical example should make this clear.

Consider a trait exhibiting statistically sig-
nificant DA (Fig. 7a). As outlined above, the
variation in R-L will have both a genetic compo-
nent (some individuals will be genetically pre-
disposed towards greater asymmetry than others,
solid region) and a developmental noise compo-
nent (stippled region). The mean of the distribu-
tion may be “corrected” to be zero via the appro-
priate arithmetic (Fig. 7b). This, however,
achieves only a statistical correction. Although
the resulting distribution now meets the statisti-
cal criteria for ideal FA, the genetic component
of the variation in R-L is still present. Hence this
variation may still not be interpreted as develop-
mental noise.

Regrettably, statistical corrections for DA have
been applied in a number of studies (e.g. Mather
1953, VanValen 1962, Soulé 1967, Livshits et al.
1988, among others) thereby rendering their con-
clusions about differences in developmental stabil-
ity among samples open to doubt. If a trait exhibits
statistically significant DA, we suggest it should be
eliminated {rom consideration as a measure of de-
velopmental stability.

2.8. Can antisymmetry be interpreted as de-
creased developmental stability?

Some have considered that antisymmetry and
FA are merely different manifestations of devel-

Fig. 7. A graphical illustration of the consequences of
“correcting” for directional asymmetry: a) a trait exhib-
iting directional asymmetry before correction, b) the
same trait after correction. Note that correction does
not eliminate the genetic fraction of the variation. See
Fig. 1 for an explanation of the convention for repre-
senting genetic and environmental variation.

opmental noise (e.g. McKenzie & Clarke 1988).
Along with VanValen (1962, p. 126), we feel
this is unlikely. Consider the extreme case of
fiddler crabs mentioned above (see ‘Other pure
forms of asymmetry’). Male fiddler crabs exhibit
an extreme form of antisymmetry in their signal-

Table 2. Shapes of R-L distributions and their possible significance. Origin of variation: E = environmental

including developmental noise, G = genetic.

Shape Mean Form of asymmetry Origin of variation See Fig.

a Normal 0 Ideal fluctuating asymmetry (FA) Ea 2a
b Normal #0 Directional asymmetry (DA) E&G 2b
c Platykurtic 0 Weak antisymmetry E&G 3a
d Bimodal 0 Strong antisymmetry E&G 3b
e Skewed #0 Mixed DA & antisymmetry E&G 3c
f Leptokurtic | 0 Mixed FA & antisymmetry E&G 4b
g Leptokurtic I 0 Mixed high FA & low FA Ea 5b
h Leptokurtic Il 0 Allometrically amplified FA ? 6

2This assumes no covariance between R and L (see conclusion to Section 2.6.)
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ling claws but the claws of female fiddler crabs
are not conspicuously asymmetrical (Yamaguchi
1977). Do male fiddler crabs somehow experi-
ence greater developmental noise (are they less
developmentally stable) than females? Clearly
not. Similarly, American lobsters Homarus
americanus also exhibit extreme antisymmetry
in their master claws — one claw develops into a
crusher claw and the other remains a cutter claw.
In very young juveniles, both claws begin as
cutter claws. Which claw becomes the crusher
claw is determined by which receives more use
handling hard objects (Govind & Pearce 1986).
Does this mean lobsters experience more devel-
opmental noise or are less developmentally sta-
ble than female fiddler crabs? Again, clearly not.

A reasonable question to ask is whether a
bimodal distribution centered on zero (e.g. Fig.
2¢) can even arise as a product of developmental
noise. This is equivalent to asking whether de-
velopmental noise can give rise to a frequency
distribution of R-L whose maximum is not at zero,
as in Fig. 2c. We prove below that, given two
simple assumptions, polymodal distributions of
R-L will always have a maximum at zero. Hence
a bimodal distribution of R-L, as found in pure
antisymmetry, can arise only if one or both as-
sumptions are violated.

Theorem: If 1) r; and [; are independently dis-
tributed, and 2) they have the same frequency dis-
tribution, f(x), then the frequency distribution g(a),
where a = r,— [, has a global maximum at a =0.

Proof: Because the frequency distributions of
r; and [; are both f{x), and because they are inde-
pendently distributed, the joint frequency distri-
bution of r; and [; is f{r)(l;). The frequency of
distribution of r; — /; is thus

g —-1)=¢g(a) = [wf (x)f(x —a)dx. 4

To prove that only a single global maximum
exists at r; — [; = 0 it is both necessary and suffi-
cient to show that

g(0)>g(a)foralla=0 é)
which requires that

+ 00

fi@dx > Lf ()f (x —a)dx . (6)

This may be rewritten as

f_ A -fx)fx—a)dx >0 (7)

Subtracting a constant from x has no effect on
the integral, hence x—a may be substituted for x
and

+oo +oo
2 2
f_ Pwa ] fe-ox. ®
Therefore, the sum of one-half of each of these
integrals is still

+ oo

Flxyde =

+oo 02 +oo o2
f(x)dx j f (x_a)dx. ©)

) ) T2

Substituting from equation 9 into equation 7
means we must now show that

)
L2 poose - +

flx - a)
T——dx > 0. (10)

But this reduces to

oo B B 2
J' [f(x)-f(x a)]dx>0‘ an

e 2

Equation 11 is always true because f(x) and flx—a)
must differ over some interval. Only if f{x) was a
constant for all values of x would f{x) always equal
Sflx—a) and hence would inequality 11 not be true.
However, the integral of such a function would
either be infinite or zero, and we know that for a
frequency distribution

+ o0
J_ f) =1 (12)
A simple numerical example may illustrate this
point more intuitively. Consider a population in
which the R and L limbs of a bilateral pair can only
occur in one of two discrete sizes (e.g. 1 unit or 3
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units in length). If a) a limb on either side has a
probability p of being size 1 and g = 1 — p of being
size 3, and b) the size of the limb on one side is
completely independent of that on the other, then
the frequency distribution of R-L will be trimodal,
with a maximum peak of height p? + ¢* at zero, and
two equivalent peaks of height pg at +2 units and
—2 units. Hence even with only two discrete states
for each side, so long as they occur independently
on each side, the frequency distribution of R-L will
be trimodal with a maximum at zero. Increasing the
number of possible states will only increase the
number of modes, which will always be odd in
number.

We feel that different levels of antisymmetry
should not be interpreted as representing differ-
ent levels of developmental stability (see also
VanValen 1962). A peculiar mechanism of de-
velopment might exist, where antisymmetry arises
early in ontogeny due to some form of develop-
mental constraint and then converges on bilateral
symmetry to varying extents depending on how
developmentally stable an organism is. However,
even if such a mechanism was shown to exist, it
is not clear how this type of developmental sta-
bility could be compared to the developmental
stability inferred from differences in FA.

3. Statistical considerations

3.1. Testing for departures from normality

Because the use of differences in FA to infer
differences in developmental stability among
samples depends heavily on whether the fre-
quency distributions of R-L are normal, we re-
view briefly the relative power of tests for depar-
tures from normality. Shapiro (1968) conducted
an extensive computer simulation using eight
tests for normality, five sample sizes, and 44
distributions. They concluded that the W test
(Shapiro & Wilk 1965) was overall more robust
than the other tests, which included tests for
skewness and Kurtosis, and the Kolmogorov-
Smirnov test (K-S test). A combination of the
tests for skewness and kurtosis, however, per-
formed almost as well as, and sometimes sur-
passed, the W test. Significantly, a closer inspec-
tion of their results revealed that the only distri-

butions where tests for kurtosis and skewness
failed completely were discrete distributions that
were approximately normal, i.e., the binomial
and Poisson distributions. The K-S test, on the
other hand, exhibited surprisingly poor power
over most non-normal distributions but worked
well if the distributions were discrete (e.g. bino-
mial or Poisson) and approximately normal.

These simulations suggest to us that tests for
skewness and kurtosis when taken together are
probably the most useful way to detect depar-
tures from normality for metrical traits. Although
the W test is the most robust overall, the joint use
of skew and kurtosis statistics has two advan-
tages. First, unlike the W test, these two descrip-
tive statistics are widely available on microcom-
puter and mainframe statistical packages, and
their significance levels are easily calculated
(Sokal & Rohlf 1981). Second, these two statis-
tics provide a more complete description of how
a distribution departs from normality.

Even where meristic characters are used to
describe bilateral asymmetry, tests for skew and
kurtosis still appear to be the best way to detect
departures from normality. Although the K-S test
was more effective at detecting departures from
normality for certain discrete distributions
(Shapiro et al. 1968), this test rejects such distri-
butions as non-normal because of the discrete
nature of the data, and not because the underly-
ing processes are fundamentally non-normal. In
other words, the K-S test may reject as non-nor-
mal distributions of R-L based on meristic char-
acters, even though they might have arisen ex-
clusively from developmental noise.

3.2. Power of tests for differences among three
or more samples

As we have argued elsewhere (Palmer & Strobeck
1986), the most useful descriptor of FA is the
variance. Therefore testing for differences in FA
among samples amounts to testing whether the
variances are equal for two or more samples. For
two samples the F test is the most powerful test
for equality of variances if the two samples are
normally distributed (Lehmann 1959). For more
than two samples at least 20 different tests are
available (Conover et al. 1981). Four of the more
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common tests, Bartlett’s, F yax, Scheffé’s, and
Levene’s are summarized in Table 3. To deter-
mine which of these tests would be most power-
ful and robust for detecting differences of FA
among populations, we conducted a series of
Monte Carlo simulations. Although these simu-
lations repeat to a large extent those reported
previously in other studies, we provide here the
power curves for these four tests. These curves
make more apparent the manner in which the
tests lose statistical power for distributions whose
shapes depart from normality.

In our simulations, the performance of each
test was examined for three symmetric distribu-
tions: the normal distribution, a platykurtic dis-
tribution (the uniform distribution), and a
leptokurtic distribution. These distributions were
generated as follows. Normally and uniformly
distributed random deviates were obtained from
IMSL subroutines GGNQF and GGUBS respec-
tively. The leptokurtic distribution was gener-
ated as the difference between two lognormal
deviates [exp(yvlog2) — exp(zVlog2))/2 where y
and z are normal deviates N[0,1]. We examined
two cases where the variances differed among
three populations either as a) 1.0, 1.0, and x, or b)
1/ x, 1.0, and x, respectively. To determine the effect
of sample size, population sizes of 30 and 100 were
used. For a sample size of 30, the values of x were

2i2 (where i =-4,-3,-2,-1,0, 1, 2, 3,4) and when
the sample size was 100, the values of x were 24
(where i = 4, -3, -2, -1, 0, 1, 2, 3, 4). For each
model, population size, and value of x, samples for
the three populations were drawn independently
from the appropriate IMSL subroutine. A P-value of
0.05 was used as the criterion for rejection in all
simulations.

The power curves generated from our simu-
lations revealed that some tests were more sen-
sitive to departures from normality than others
(Figs. 8 and 9). These curves describe the prob-
ability of rejection given that the null hypothesis
(variances for all three samples equal) is false.
Hence, for a given variance, the higher the power
the greater the ability of a test to detect true
differences in the variances among samples. At
the same time, to conform to the conventions for
statistical significance, the probability of reject-
ing the null hypothesis when true (i.e. when all
variances are in fact equal), should be P = 0.05.
Thus, the preferred test should have a) a higher
power to detect true differences in the variances,
and b) the proper rejection rate (P= 0.05) when the
variances are equal.

Three conclusions can be drawn from these
power curves. First, Scheffé’s test was consist-
ently less powerful than the others when the
distributions were normal, regardless of whether

Table 3. Four common tests for heterogeneity of variances (heteroscedasticity) among three or more samples.

sj = variance of R-L for sample i, n; = number of individuals per sample j, N = number of samples.

Bartlett's test?

2=[Z (= 1In 52 =[Z (nj-1)In & ], where s} =[S (nj-1)In % ]/ (nj—1) and ;=

number of observations per sample i. %2 significance is assessed for N — 1 degrees of free-

dom,

. 2 2 2
F wax test? Given s,s,,s,, ...
Levene's testt

Scheffé's test?
m=vn;)

sz, the test stafisticis s& /s .
n max

min

One-way analysis of variance on |R;~ Lj where each cell corresponds to a single sample.

1) randomly divide each sample /of njobservations into msubsamples (the optimum value of

2) compute the variance separately for each of the m subsamples

. . 2 .
3) conduct a one-way analysis of variance on log s, (each sample will thus be repre-

sented by m log-transformed variances, the ANOVA tests for differences in average log
variance among samples).

adescribed in Sokal & Rohlf (1981); Scheffé's test = Scheffé-Box test in Conover et al. (1981).
bdescribed in Snedecor & Cochran (1980).
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Fig. 8. Power curves for four tests
for heterogeneity of variances
among three samples when varia-
tion is normal: a) only the variance
of the third sample varies, b) the
variance of both the first and third
sample varies. N = 30 for all sam-
ples. Scheffé’s test was conducted
with 5 subsamples of size 6. Power
is the percent rejection out of 1000
trials. See Table 3 for descriptions
of the tests.

Fig. 9. Power curves for four tests
for heterogeneity of variances
among three samples when varia-
tion is: a) normal, b) uniform
(platykurtic), or ¢) leptokurtic. Only
the variance of the third sample
varies. N = 100 for all samples.
Scheffé’s test was conducted with
10 subsamples of size 10. Power-
percent rejection out of 1000 trials.
See Tabie 3 for descriptions of the
tests.
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sample sizes were small or large (Fig. 8a vs 9a),
or whether variances differed in one or two of
the three simulated populations (Fig. 8a vs 8b). It
was either the same as or less powerful than
Levene’s test when the distributions were not
normal (Figs. 9b, c¢). These simulations confirm
the conclusions of Layard (1973) that Scheffé’s
test is not a powerful test for heterogeneity of
variances, hence it seems of dubious value for
FA studies. Second, the F . test and Bartlett’s
test were both very sensitive to non-normality
(Sokal & Rohlf 1981). Where the distribution
was platykurtic (uniform distribution) both tests
rejected the null hypothesis when true (i.e. equal
variance for all three populations), with a prob-
ability of approximately 0.003 instead of 0.05
(Fig. 9b). Where the distribution was leptokurtic
this probability was approximately 0.65 instead
of 0.05 for both tests (Fig. 9c). Third, Levene’s
test and Scheffé’s test were both robust for all
distributions tested. That is, when the null hy-
pothesis was true (equal variances for all three
samples) the rejection rate of the null hypothesis
was approximately 0.05 as it should have been
(Figs. 8 and 9). These results agree with those of
Conover et al. (1981), but they did not consider
Scheffé’s test and did not present results for the
uniform distribution.

Therefore we recommend that Levene’s test be
used for three reasons. First, it appears to be the
least sensitive to departures from normality in the
direction of leptokurtosis or platykurtosis, and hence
more likely to yield correct P values even where
these departures are small. Note, however, that
Levene’s test is rather sensitive to asymmetrical
distributions (i.e. skew; Conover et al. 1981). Sec-
ond, because it involves only an analysis of variance
(Table 3), it may be conducted easily with common
microcomputer and mainframe statistical packages.
Finally, even where distributions were normal,
Levene’s test was only slightly less powerful than
Bartlett’s or Fysx (Fig. 8).

4. Conclusions

4.1. Whither developmental stability?

Given that so many departures of R-L distributions
from ideal FA may signal a genetic component

to bilateral asymmetry (Table 2) and may thereby
render inferences about levels of developmental
stability tenuous, what should one conclude? Does
this greatly restrict the utility of developmental
stability studies? Unfortunately, we cannot an-
swer this question with much confidence given
the information available. Too few data exist to
assess how common the above departures from
ideal FA are.

This dearth of data highlights our first and
perhaps most important conclusion. Future stud-
ies of developmental stability should

a) include more explicit descriptions of the dis-
tributions of R-L (all four statistical moments:
mean, variance, skew, and kurtosis) for the
variables examined, and

b) describe the results of statistical tests for de-
partures from ideal FA for these characters.

Alternatively, histograms of R-L distributions for
selected traits or selected samples crucial to the
main conclusions of the study could suffice.
Without the benefit of such basic descriptive
information, studies of developmental stability
will remain very difficult to interpret with much
confidence, and meaningful quantitative com-
parisons among studies will be virtually impossi-
ble.

Second, where a single trait is used to charac-
terize developmental stability, the interpretation
of differences among samples will be much more
sensitive to departures from ideal FA. From a
practical point of view, nearly all distributions of
R-L will depart from ideal FA in some way or
another if only by chance. Without additional
data, one may or may not be able to determine
with any confidence if these departures have in-
fluenced the conclusions of a study or not. If
several developmentally independent traits are
examined instead of one, however, and the quali-
tative differences among experimental groups or
among natural populations are for the most part
consistent across these traits, then differences
among samples are much more likely to reflect
real differences in organism-wide developmen-
tal stability or developmental noise. Studies based
upon multiple traits will thus be more convinc-
ing than those based on one or a few traits.

Finally, skeptics may feel that our cautions
are largely hypothetical. In particular they may
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question whether any evidence exists to support
our peculiar notion of composite populations
where, for example, both FA and antisymmetry
may co-occur for a given trait in a single sample
(e.g. Fig. 4b). A recent paper, however, reports
precisely the kind of composite distribution about
which we have raised concern. McKenzie &
Clarke (1988) present striking evidence for a
single allele (or block of tightly linked alleles)
that induces antisymmetry in the sheep blowfly
Lucilia cuprina (see their Fig. 6). The sample of
individuals lacking this allele exhibited ideal FA.
Although they interpret the variation erroneously
as FA, their data suggest that this antisymmetry
allele increased in frequency shortly after the
application of pesticides, and then declined in
frequency as Lucilia adapted to the pesticide
(Clarke & McKenzie 1987). Composite distribu-
tions of asymmetry variation are thus clearly
possible.

4.2. Limitations of a classical study

Among the many studies of FA, one of the most
extensive and thought-provoking is that of Mather
(1953) on homeostasis in Drosophila melano-
gaster. He examined the effects of sex differ-
ences, environmental stress, inbreeding, crosses
between inbred strains, and selection for both
increased and decreased FA. Although an admi-
rable study in a great many ways, Mather’s con-
clusions all depend critically on the assumption
that the single trait with which he estimated de-
velopmental stability (sternopleural chaetae
number) exhibited ideal FA. If it exhibited some
form of antisymmetry (e.g. Fig. 3a, b), as
VanValen (1962, p. 126) suggested it did, the
majority of the patterns he reported may have
reflected changes in the frequency of genes af-
fecting antisymmetry rather than in developmen-
tal stability. Unfortunately, because he did not
present any histograms of R-L or statistics de-
scribing the shape of this distribution, this possi-
bility cannot be ruled out. We hope future stud-
ies of this magnitude do not suffer from such
oversights.
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