Ann. Rev. Ecol. Syst. 1986. 17:391-421
Copyright © 1986 by Annual Reviews Inc. All rights reserved
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INTRODUCTION

“It might have been anticipated that deviations from the law of symmetry
would not have been inherited.”

Darwin (22:456)

With these words Darwin opened a brief paragraph citing observations anti-
thetical to his supposition: anecdotal reports of the inheritance of characters
missing from one side of the body. His initial hunch, however, has stood the
test of time: Genetic studies have confirmed that where only small, random
deviations from bilateral symmetry exist, the deviations in a particular direc-
tion have little or no measurable heritability (17, 47, 51, 65a, 73a, 74, 91).
The genetic basis of bilateral symmetry thus appears to differ fundamentally
from that of virtually all other morphological features.

Why, then, all the recent (and not so recent) interest in such minor,
nondirectional deviations from bilateral symmetry [fluctuating asymmetry
(FA); 60 cited in 99]? Four reasons. First, FA relates in a curious way to what
is perhaps the major unsolved general problem in modern biology: the orderly
expression of genotypes as complex, three-dimensional phenotypes. As was
emphasized in a flurry of activity in the mid to late 1950s, and many times
since, FA provides an appealing measure of ‘developmental noise,” or minor
environmentally induced departures from some ideal developmental program
(101). Its appeal derives from an a priori knowledge of the ideal: perfect
bilateral symmetry. For unilateral characters, the ideal is rarely known (but
see 1, 2, and 59 for one possible approach). A second reason for interest in
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FA is that, even though deviations from symmetry in a particular direction of
an otherwise symmetrical trait have little or no heritable basis, both the
likelihood that an individual departs from bilateral symmetry and the degree
to which it departs from bilateral symmetry in either direction often do appear
to have a heritable basis (36, 48, 61, 65, 66, 76; but see 8, 51, 64, and 91 for
negative results).

Third, over the last few years interest has been fueled by repeated observa-
tions of statistically significant associations between FA and protein
heterozygosity: the more heterozygous the individual (49, 50) or the popula-
tion (10, 44, 51, 53, 87, 100), the lower the FA. In other words, for reasons
not yet clear, increased heterozygosity appears to provide increased ‘buffer-
ing’ against environmentally induced perturbations during development (55;
reviewed in 67). Fourth, in apparant contradiction to the last pattern, two
recent studies (32, 52) have reported increased FA in between-species hybrids
compared to that of either parental species, even though the hybrids were
more heterozygous than their parents (see also 105 cited in 32). Hence,
whatever canalizing role heterozygosity may play within species, such
canalization appears to be disrupted with the mixing of ‘coadapted gene
complexes’ in interspecies hybrids (24).

Fluctuating asymmetry is one of three types of asymmetry, each character-
ized by a different combination of mean and variance of the distribution of
right-minus-left (R — L) differences (99). Directional asymmetry reflects a
consistent bias of a character within a species towards greater development on
one side of the body than on the other; the coiling and associated anatomical
asymmetry of gastropods or the asymmetry of flatfish (39) are examples of
such. Directionally asymmetric traits exhibit normally distributed R — L
differences about a mean that is significantly either greater than or less than
zero. Antisymmetry is distinguished by a platykurtic (broad peaked) or bimod-
al distribution of R — L differences about a mean of zero. In male fiddler
crabs, for example, the oversized signalling claw, which is much larger than
the opposing one, occurs with approximately equal frequency on both the
right and left sides in nearly all species (21a). Fluctuating asymmetry differs
from the prior two because it has a normal distribution of R — L differences
whose mean is zero.

Variation in FA has been examined in a rather remarkable variety of traits
and organisms including: teeth in humans (8, 33, 70, 73a; reviewed in 83), in
rats and mice (6, 7, 79, 80, 81, 82, 99), and in extinct horses (99); palm ridge
counts (42), fingertip ridge counts (63, 90), and ear lobe lengths (90) in
humans, limb bones in humans (43, 78) and martens (43); cranial traits in
species of large cats (103), rhesus macaques (66), muskrats (72) and kangaroo
rats (90); various skeletal elements (34, 47, 48, 80, 91, 96) and mustachial
vibrissae (90) in rats and mice; wing bones in birds (2, 90); numerous metric
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and meristic traits in lizards (30, 40, 86, 87) and in fish (3, 5, 29, 32, 36, 39,
41,49, 50, 51, 52, 53, 69, 97, 98, 100); sternopleural chaetae number (9, 12,
61, 65, 76, 90, 92, 93, 94, 99) and other features (10, 99, 102) in Drosophila;
wing lengths in honeybees (13) and houseflies (90); wing and other features in
butterflies (64, 89); antennal length in dipteran flies (46); and labial palps and
siphonal papillae of freshwater bivalves (44).

Rather than detail the many specific contributions that have been made in
this area (see reviews in 67, 71, 90) or discuss the causes (58, 83, 88),
adaptive value (16) or relation to species formation (56) of variation in FA,
we have chosen to discuss three issues that arose in our survey of the
literature. The first is the diversity of FA indexes: In our survey we discovered
an almost bewildering variety, which frustrated our attempts to compare
results quantitatively across studies. We point out both the features common
to and some of the important differences among these indexes. The second
issue is statistical analysis of FA variation. We illustrate the use of analysis of
variance for obtaining the best estimate of FA, and its use for separating FA
from directional asymmetry, one form of antisymmetry, and measurement
error. We also discuss a particularly thorny, problem that arises when compar-
ing FA among samples: How should differences in character size be handled?

The third issue we address is the implication of certain observed patterns of
FA variation. Here we focus on the relationship between population structure
(linkage disequilibrium, inbreeding, and population size) and correlations
observed between FA and heterozygosity. These include: (a) the apparent
relationship between FA and heterozygosity at individual loci (e.g. what can
one conclude when individuals heterozygous at a particular locus are signifi-
cantly less asymmetric than individuals homozygous at that locus within a
population?), and (b) the apparent inconsistency between the patterns of
concordance of asymmetry of several traits among individuals within a pop-
ulation versus such concordance among populations. (For example, if the
supposed buffering effects of heterozygosity are organism-wide, why is
asymmetry of one trait not in general a very good predictor of asymmetry in
other traits on the same individual? This is so even though the average
asymmetry of a trait is frequently a good predictor of the average asymmetry
of other traits when compared across populations. See Table 4 for sum-
mary.). Finally, we review some novel potential applications of FA as an
inferential tool.

MEASURING FLUCTUATING ASYMMETRY
Diversity of FA Indexes

A rather remarkable number of different indexes of FA have been used in
previous studies; we have found at least 22. These 22 different indexes,
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however, are all largely variants of 9 fundamental ones (Table 1). The
asymmetry of a given character on an individual i (4;) has been measured as
either the absolute value of the difference between right and left (|R; — L)),
the signed difference (R; — L;), or the ratio of the measurements from each
side of an individual (R;/L;). Each of these measures has served as the basis of
one or more indexes used to analyze asymmetry differences among samples;
the main difference is whether or not, or how, variation in overall character
size is handled (Table 1). Some do not correct for differences in character size
(Indexes 1, 4, and 5). Those that do correct for size do so either individual by
individual (Indexes 2, 6, 8 and 9) or at the level of the population (Indexes 3
and 7). The most commonly used indexes are 1 and 4 (Table 1).

Discriminatory Ability of FA Indexes

TEST DISTRIBUTIONS Given their variety, how effective are these nine
indexes at detecting true differences in FA among samples? To address this
problem, we simulated samples for which we knew differences in the level of
FA. Then we tested the ability of each index to discriminate these known
differences. We assumed that FA arose as a product of uncorrelated, random
disturbances experienced during development by each member of a bilateral
pair of characters, as would be expected if FA was produced by thermal noise
(58, 88) or by random accidents during development (65). These disturbances
were assumed to cause each member to deviate from a mean character size
determined by the size of the individual. We also assumed that directional
asymmetry reflected an invariant, genetically fixed difference between the
right and left sides. In these simulations we did not incorporate any anti-
symmetry. We did, however, consider two patterns of variation in FA with
size: FA independent of size, and FA proportional to size.
For FA independent of character size, sides were simulated as

Ri= M + D2 + A + ti, and 1.
Li= o D2 + Si + lia 2.

where R; and L; represent for individual i the sizes of the right and left
members of a bilateral pair of characters respectively, where u is the mean
character size of the population, where D is the amount of directional asym-
metry (D/2 was added to right and subtracted from left to keep character size
independent of directional asymmetry), where s; is a deviation in the character
size of individual i from the population mean [drawn from an open interval,
uniform distribution (=82 < s; < +S§/2), obtained from IMSL routine
GGUBS], and where r; and /; are the deviations of the right and left sides
respectively from the mean character size of individual i [u + s;; each was
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drawn from an independently created normal distribution of mean zero and
variance a/2, from IMSL routine GGNML,; a was divided by 2 so that var(R;
— L;), the underlying FA variance in the absence of any size variation, would
equal a]. For FA increasing proportional to character size, sides were sim-
ulated as:

Ri: i + D2 + S; + [P(,LL + Si) ri], and 3.

Li=p — D2 + s + [P(n + s) [}], 4.

where P is a constant of proportionality.

To assess the relative discriminatory ability of the nine indexes at extracting
true differences in FA from our computer-generated samples, we varied the
range of character size (S), the proportionality of FA to character size (P),
directional asymmetry (D), and FA (a). The mean character size of a sample
was held constant throughout (u = 100). We calculated each index from the
same sample of 20 individuals obtained for various combinations of S (0, 10,
20, 60, 100), P (0.01), D (0, 0.1, 1, and 5), and FA (a = 1, 2, 3, 4, and 5;
thus, the FA standard deviation Va = V3 is used below to achieve di-
mensionless measures for comparing FA with size variation and directional
asymmetry). A sample size of 20 was chosen because it was commonly used
in the studies we examined; we note where variation in sample size may affect
our qualitative conclusions. The above procedure was repeated 100 times
using different distributions of random numbers. The ability of each index to
distinguish among the 5 levels of FA was then evaluated separately for each
combination of the remaining parameters by conducting a one-way analysis of
variance [ANOVA Groups = level of FA (a), Within = 100 trials; BMDP7D
23] on log-transformed values. The average F value from 5 such one-way
ANOVAs was used as a measure of the degree of separation each index
achieved among FA groups; F values were used because they allowed us to
assess power without assuming any a priori function relating each index to the
parametric FA values. Since each index was essentially estimating a
parametric variance, and estimates of variances are not normally distributed,
all values were log transformed both to normalize and to homogenize them
across FA groups (85).

SIZE VARIATION ABSENT The results of the analyses when no character size
variation was present (S = 0; Figures la,b) were surprising. Except for Index
9, whose F was indistinguishable from zero, the F values for the various
indexes, and hence their discriminatory powers, differed by less than 10%
(Table 2). Index 5 exhibited consistently higher F values by 5-6%, while
those remaining differed by only about 2% among themselves; those based on
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Figure 1 Discriminatory ability (mean F value from one-way ANOVA) of FA indices as a
function of the range of size variation: (a) FA independent of character size (Equations 1 and 2),
(b) FA increasing proportional to character size (P = 0.01, Equations 3 and 4). S, character size
range (0, 10, 20, 60, 100); w, mean character size (100); FA, fluctuating asymmetry variance (a;
1,2, 3, 4,5, hence Va = \/5), circled numbers correspond to the numbered indices of Table 1.
Solitary points with error bars illustrate =SE for five runs. For these simulations, D = 0.
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unsigned R — L differences (Indexes 1-3) were on average the least able to
distinguish true FA differences.

The higher discriminatory ability of Index 5 reflects the one additional
degree of freedom it has over Index 4: Because Index 5 estimates the variance
of a distribution whose true mean is zero, it does not lose (as Index 4 does) the
one degree of freedom required to estimate this mean. Since the mean R — L
difference in these simulations was truly zero, and since sample sizes were
20, one additional degree of freedom is equivalent to a 5% increase in sample
size. This yields a 5% increase in the accuracy with which FA is estimated;
the larger the sample sizes, the smaller the difference between Indexes 4
and 5.

EFFECT OF SIZE VARIATION Differences among the indexes in their dis-
criminatory ability became more apparent as the character size range (S) was

Table 2 Relative discriminatory ability of FA indices with
increasing size variation®

Relative character size variation (S/\/E) with FA
independent of size

Index® 0 5.8 11.5 34.6 57.7
1 92 92 90 89 87
2 92 91 89 83 69
3 92 92 90 88 77
4 94 95 95 95 95
5 100 100 100 100 100
6 94 94 94 82 62
7 94 95 95 95 92
8 94 94 94 82 62
9 <1 54 62 65 60

Relative character size variation (S/\/Z) with FA

proportional to size (P = 0.01)
Index® 0o . 58 11.5 34.6 57.7
1 92 90 91 91 79
2 92 90 92 97 93
3 92 90 91 95 87
4 94 94 95 89 75
5 100 100 100 93 77
6 94 96 97 100 100
7 94 96 96 91 80
8 94 96 97 100 100
9 <1 57 61 60 56

aTabled values are the ratio (times 100) of the F of a particular index
over the F for the index with the maximum discriminatory ability for
each parameter combination; from Figures 1a,b.

bSee Table 1 for indexes.



FLUCTUATING ASYMMETRY 399

increased. First, as noted by others (4, 12), the correlation of R on L (Index 9)
behaved fundamentally differently from all the others; over the parameter
range tested, it never achieved power comparable to any other index (Figure
la,b, Table 2). Further, Index 9 is very sensitive to size range (4) and hence is
generally not very useful.

Not unexpectedly, of the remaining indexes, those scaling out character
size variation (Indexes 2, 3, 6, and 8) became less reliable than those not
scaling out size (Indexes 1, 4, and 5) when FA was independent of size
(Equations 1 and 2, Figure 1a, Table 2). Index 7 appeared to be an exception,
but this was an artifact of keeping the mean character size of the population
(p) constant (see Table 1). Similarly, with FA increasing proportional to
character size (P = 0.01 in Equations 3 and 4), those indexes scaling out
character size were more reliable than those not (Figure 1b). Although the
results were not presented, increasing P to 0.05 had no effect on these
qualitative conclusions.

The discriminatory ability of particular indexes in the presence of size
variation depended on whether FA was independent of character size or not.
With FA independent of size (Equations-1 and 2; Figure la), F values for
Index 5 were consistently the highest, ranging from 5% to 38% above the
remaining indexes, depending on the level of size variation (S). As in the
absence of size variation, those indexes based on the variance of signed R — L
differences were, on average, more powerful than the equivalent ones based
on the mean of the unsigned differences (Indexes 4 or 5 vs 1; Index 7 vs 3).

When FA increased with size (P = 0.01, Equations 3 and 4), Index 5
yielded the highest F' values when size variation was small relative to FA (e.g.
S/Va less than 15; Figure 1b). With increased size variation, Indexes 6 and 8
became the most reliable for discriminating true differences in FA. However,
over the parameter range tested, these latter two indexes surpassed the
remaining ones by only 7-25% (Figure 1b, Table 2).

EFFECT OF DIRECTIONAL ASYMMETRY  One of the more common causes of
departures of bilateral variation from true fluctuating asymmetry is varying
levels of directional asymmetry (6, 30, 43, 47, 64, 73, 99). Not all the
indexes were sensitive to directional asymmetry, but some were very sensi-
tive. As expected from their form (Table 1), Indexes 4, 6, 7, 8, and 9
remained unaffected by directional asymmetry in the absence of size variation
(S = 0; Figure 2a). Indexes 4, 7, and 9 also remained unaffected at a high-size
variation relative to FA (S/\/E > 50) when FA was independent of character
size (Equations 1 and 2; Figure 2b). Notably, Index 5 was very sensitive to
directional asymmetry for these parameters (Figures 2a,b); even though it was
5%-38% more powerful than all the other indexes in the absence of di-
rectional asymmetry (Table 2). This higher discriminatory ability was quickly
lost, however, as the ratio of directional asymmetry to FA (D/\/E) exceeded
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0.2. Thus, minor directional asymmetry may seriously weaken what is other-
wise the most powerful index for distinguishing true differences in FA when
FA is independent of character size.

With FA proportional to character size, most 1ndexes lost power as di-
rectional asymmetry increased (Figure 1c). However, the two that were most
effective (Indexes 6 and 8) in the absence of directional asymmetry remained
unaffected.

Recommendations

The above analyses reveal that those indexes based on the variance of R — L
(Indexes 4, 5, 6, or 8) are more useful for detecting true differences in FA
among samples than those based on the mean of the absolute values of R — L
(Indexes 1-3, Table 2). This is consistent with the conclusion of Kendall &
Stewart (44a, pg. 20-21): Although the mean of the absolute values of
deviations (multiplied by V#r/2) is an unbiased estimator of the parametric
standard deviation of a normal distribution, it is only 87.6% as efficient as the
sample standard deviation. Because of its statistical power, we outline below
a protocol using a modified analysis of variance that yields the best estimate
of the FA variance.

In one situation, however, Index 5 may be preferred over this procedure: for
small samples sizes. For small sample sizes (N < 25), if FA is independent of
character size, and if directional asymmetry and antisymmetry are absent (see
tests below), the index most able to distinguish true differences in FA among
samples is Index 5 (Figure 1a, Table 2). Because of its one additional degree
of freedom, the percentage increase in discriminatory ability of Index 5 over
Index 4 will be approximately 100/N, where N is the size of the sample for
which FA is being estimated. This additional degree of freedom is lost in the
analysis of variance because it is required to estimate the parametric mean.

ANALYZING VARIATION IN FLUCTUATING
ASYMMETRY

The preceding discussion highlights the sensitivity of particular FA indexes
both to character size variation and to directional asymmetry. It also un-
derscores the overall greater discriminatory power of those indexes based on
the variance of R — L. We thus suggest the following protocol, which yields
the best estimate of var(R — L) for a sample: It is essentially analogous to
calculating Index 4 in the absence of any size dependence of FA or calculating
Index 6 where FA is proportional to size and size is scaled out.

Testing for Size Dependence of FA Within Samples

As many have noted (3, 5, 6, 32, 51, 52, 65, 75, 76, 98), testing for a
relationship between the magnitude of FA and character size is an essential
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first step. Because of the many possible ways in which FA may vary with
size, we recommend an inspection of plots of (R; — L;) versus size (either (R;
+ L;)/2, or some other independent measure of body size). If the spread of R
— L differences varies (most likely, it increases) with character size, then
some form of scaling is indicated; the transformation to be used will depend
on the pattern of variation. If the spread increases linearly with size, we
suggest dividing by size and replotting to see if size scaling is complete. If the
spread increases nonlinearly, then the R; and L; values should be divided by
size and transformed (e.g. log or square root) so that no relationship with size
remains. Regression analysis of |R; — Li| (31) or possibly of log|R; — Li| (to
homogenize the variance) against size may also be used to detect size depen-
dence. [But see the cautions of Gujarati (35:204).] For reviews of analyses of
residuals and heteroscedasticity (unequal variances), with suggestions for
transformations, see 20 and 35 respectively.

ASSUMPTIONS BEHIND SIZE SCALING The relationship of FA with char-
acter size is perhaps the most troublesome aspect of analyzing for differences
in FA among samples. An important assumption behind the scaling out of size
dependence is that such scaling does not reduce or eliminate desired informa-
tion about real differences in FA among samples. However, since the variance
for a character (and hence the FA if it were bilaterally paired) often increases
with increasing size (45, 76), such size dependence could distort differences
in FA among populations whose mean sizes or size ranges differed.

Correlations of FA with two factors, fitness and growth rate, may result in
information being lost. Since both the level of FA (50, 51, 53) and
heterozygosity (24, 25, 26, 57) can be correlated with fitness, larger in-
dividuals (those that have survived longer) in species with indeterminate
growth may represent a sample biased towards higher heterozygosity. Sim-
ilarly, since in some organisms the development rate (21) or growth rate
(reviewed in 67) increases with increasing heterozygosity, larger individuals
of a given age will be more heterozygous than smaller ones. For both cases, if
increased heterozygosity in turn results in lower FA, as is often observed (e.g.
see Table 4 below), then size scaling may reduce true differences between
samples of different mean sizes or size ranges.

Assessing Measurement Error, Directional Asymmetry, and
Antisymmetry Within Samples

Differences in FA among samples are generally small (7, 32, 43). Thus,
confounding factors (measurement error, directional asymmetry, and anti-
symmetry) may make up a sizable fraction of the between-sides (within-
individuals) variance in a sample. For example, although rarely reported,
measurement error as a percentage of nondirectional asymmetry can be high:
up to 10% and 22% for asymmetry of metric and meristic characters in a
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centrarchid fish (3); up to 11% and 25% for fluctuating dental asymmetry in
wild mice (7) and in human skeletons exhumed from Nubian cemeteries (33)
respectively; and up to 33% and 76% in asymmetry of color patch dimensions
and wing length respectively in a nymphalid butterfly (64). In addition,
antisymmetry may also inflate the between-sides variance and hence may
distort estimates of FA. To be confident of conclusions drawn about the
presence or absence of differences among samples, these factors must be
estimated or ruled out.

We suggest an approach modified from Leamy (47) which has several
advantages: use a two-way, mixed-model analysis of variance [sides (fixed)
X ‘genotypes’ (random)] with repeated measurements of each side (Table 3).
In practice ‘genotypes’ would correspond to individuals except as outlined
below. Note that this is not equivalent to a two-way ANOVA with replication:
Repeat measurements of the same side are not replicates since they are not
independent and do not provide any additional information about the variation
of a character on a given side. True replicates (Table 3a) are only possible
either: (@) where two or more individuals with identical genomes are avail-
able, as would occur with clonemates of parthenogenic species, or (b) where
two or more units in modular organisms, such as colonial invertebrates or
plants (77), are being compared. Caution must thus be exercised when testing
MS.

Even if clonemates (individuals in Table 3a) are available, however, the
interpretation of variance components assumes that character size differences
among clonemates are not a product of environmentally induced differences
in body size. In other words, ‘developmental noise’ is not calculatedon R — L
differences; rather, it is calculated as the variance of a given side among
clonemates, averaged across all sides and genotypes. Consequently, the
apparent magnitude of developmental noise (nondirectional asymmetry or o'7)
may be inflated over its true value owing to environmentally induced variation
in body size and hence character size. The significance of environmentally
induced variation in overall body size may be tested by conducting a sides X
individuals ANOVA without replication (Table 3b) for each genotype sepa-
rately as outlined below. Here again, however, if size variation is significant,
any dependency of FA on character size must be eliminated.

Two aspects of the expected mean squares (MS) from this ANOVA (Table
3) should be noted. First, all higher order MS include both variation due to
measurement error (o2,) and variation due to nondirectional asymmetry (o?;
doubling MS; (Table 3b), in fact, actually yields Index 4 (Table 1). The
expected MS in Table 3 thus make explicit how the confounding effects of
both antisymmetry and measurement enter into the indexes of Table 1.

Second, if clonemates are available, two types of antisymmetry are re~<
vealed, only one of which may be partitioned out of nondirectional asymme-
try. Antisymmetry I is the sides X genotypes (i.e. clones) interaction (aﬁj,
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Table 3a) and is actually, from a functional standpoint, directional asymmetry
for a given clone. This antisymmetry would have a genetic basis, and its
contribution to the total variance may be partitioned out (see Antisymmetry
below). Antisymmetry II, on the other hand, is actually a form of nongenetic
developmental noise in which a character on one side of the body is con-
sistently larger than its partner. Even for genetically identical individuals,
however, the larger side may be either the right or the left. It is inseparable
from FA in the variation due to nondirectional asymmetry (o2, Table 3a).
Since an ANOVA cannot separate antisymmetry II from FA completely,
some other test must be performed (see Antisymmetry below). Similarly, with
no clonemates to provide replication (virtually always the case), ANOVA can
not partition out either form of antisymmetry from FA since the variance
components due to antisymmetry and FA are all indistinguishable as non-
directional asymmetry (o2, Table 3b).

FA RELATIVE TO MEASUREMENT ERROR Repeated measurements of each
side are useful for two reasons even when, as is nearly always true, replicate
individuals of a given genotype (clonemates) are not available. First, testing
the MS due to variation among individuals (MS;; Table 3a) or the remainder
(MSg;; Table 3b) over the MS due to measurement error (MS,,) reveals
whether nondirectional asymmetry (o?) is making a significant contribution
to the variation observed relative to measurement error. If it is not significant,
of course, further analyses of variation in FA would be fruitless unless a larger
number of measurements per side revealed significant differences.

Second, and perhaps more importantly for comparisons among samples,
repeated measurements permit measurement error to be partitioned out of the
estimate of FA. Subtracting the measurement error (MS,,,) from the MS due to
individual variation (MS;; Table 3a) or the remainder (MSg;; Table 3b), and
dividing by the number of replicate measurements (M), leaves only the
variance component due to nondirectional asymmetry (one or both types of
antisymmetry, plus FA). This reveals how much of the nondirectional asym-
metry is due to measurement error and hence how much would be gained by
taking additional repeated measurements. It also yields a much better estimate
of FA, which may then be compared among samples (see Detecting FA
Differences Among Samples below). Given maximum measurement errors of
from 10% to 76% of nondirectional asymmetry as indicated above, a sub-
stantial increase in the ability to distinguish small differences among samples
may obtain from taking even two repeated measurements of a character on
each side, instead of one.

DIRECTIONAL ASYMMETRY Since this is a mixed model ANOVA (sides =
fixed, genotypes = random), the MS due to directional asymmetry or sides
(MS,) is tested over MSg;, which corresponds to measurement error (o) plus
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the variance components due to nondirectional asymmetry. The test is the
same regardless of whether replicate clonemates are available. Though some-
times significant for many characters (30, 47), directional asymmetry is more
commonly significant statistically only for some characters (6, 43, 64, 73,
99), or it may be nonsignificant (2, 29, 32, 40, 44, 77, 79).

ANTISYMMETRY Because it may seriously confound interpretations of vari-
ation in FA, evident from the MS of Table 3, eliminating the possibility of
antisymmetry is a very important but often ignored step. Should clonemates
be available, one form of antisymmetry—antisymmetry I—may be estimated
by subtracting the variation due to individuals (MS;) from the sides X
genotypes interaction (MSg;) and dividing by the number of individuals per
genotype (I; Table 3a). In the absence of clonemates, none of the contribution
of antisymmetry may be partitioned out of nondirectional asymmetry.
However, as emphasized above, even with replicate individuals only a portion
of the contribution of antisymmetry to nondirectional asymmetry can be tested
or partitioned out by ANOVA. Hence, an additional test must be performed to
determine if significant antisymmetry is present.

Testing for platykurtic (broad-peaked or bimodal) departures from normal-
ity of the distribution of (R; — L;) is the appropriate test for the presence of
antisymmetry. Graphical tests (2, 99) or histograms of the signed R — L
differences will reveal departures from normality, and the Kolmogorov-
Smirnov test (85), available on many statistical packages, will reveal the
significance of those departures. If either form of antisymmetry is statistically
significant, reliable conclusions about variation in FA among samples may
not be drawn because they may be confounded by differences in anti-
symmetry. In those studies of FA that tested for antisymmetry, it was found to
be either very rare (‘no consistent trend’—29); significant in only 1 of 120
possible character distributions (40), or absent (not significant in a total of 20
characters measured for three different species—99). However, numerous
examples of antisymmetry are known (21a, 43a, 46a, 69a).

EFFECTIVENESS OF SIZE SCALING The ANOVA outlined in Table 3 also
permits an estimate of the effectiveness of size scaling, since the variance
contribution of genotypes (MS;, Table 3a) may now be tested over the
variation due to nondirectional asymmetry. This tests whether the average
size of a character varies more among individuals than would be expected if
only FA were contributing to size variation. If not significant, size scaling is
complete; this would occur necessarily if each side were divided by (R; +
L))/2 but would not necessarily occur if each side were scaled by some
independent measure of body size. If the effect of genotypes is significant, (R
— L) differences should be plotted against size as above (see Testing for Size
Dependence) and transformed if necessary. Note that in the absence of
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clonemates, genotypes (MS;) can only be tested over nondirectional asymme-
try (MSy;) if no antisymmetry is present (Table 3b).

Detecting FA Differences Among Samples

SINGLE TRAITS PER INDIVIDUAL The appropriate test for differences in FA
among samples depends on which index is used. For indexes based on |R; —

,I (Indexes 1 and 2, Table 1), a nonparametric ANOVA (e. g. Kruskall-
Wallis) has been used (3, 41). Parametric ANOV As have also been conducted
with these indexes (9, 12, 76, 77, 92, 93), but this is not proper statistically
for two reasons. First, the distributions are truncated at zero and hence highly
skewed to the right; second, they have unequal variances.

The indexes with the highest discriminatory ability (Indexes 4, 5, 6, and 8;
Tables 1 and 2) are variances. The more accurate estimate (the value of o?;
Table 3) derived from the within-sample ANOVA outlined above, is also a
variance. Thus, testing whether FA varies significantly among samples is
essentially testing whether the variances are homogeneous among groups (for
a review of such tests, along with estimates of their power see 19). Several
tests allow such an analysis.

To compare FA between two samples a standard F-test is not just appro-
priate; it is the most powerful parametric test for such differences if the two
samples are normally distributed (54; examples of its application include 6,
13, 33, 79, 83, 91, 98). Even so, unless sample sizes are reasonably large,
true differences in variance are difficult to detect; for example, to detect a true
twofold difference between two variances even 75% of the time requires that
the sample size of each group exceeds 40 (see Figure 4 in 83). The appropriate
degrees of freedom for the F-test depend upon how FA is estimated. If no
replicate measurements are taken, the degrees of freedom for each FA es-
timate will be those of the MS for nondirectional asymmetry (either MS; of
Table 3a, or MS; of Table 3b). If replicate measurements are taken, the
Satterthwaite formula for the degrees of freedom of the variance component
due to nondirectional asymmetry (o?) are (using the notation of Table 3):

(MS; — MS,,)?
(MS,) N MS,)* °
SIE—1)  SIHM - 1)

Table 3a:

MSy) — MS,)°
[ (MSy)° + MS,,)° :l
E-DJ -1  SIM-—1)

or Table 3b:

[from ‘Approximate F-test’ (77a:247-8)].
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For comparing FA among three or more samples, several tests are avail-
able: Fmax test, Bartlett’s test, Scheffé-Box test, Levene’s test, and Box-Cox
test. The Fmax test (37) is based on the ratio of the maximum sample variance
to the minimum sample variance. Although quick, it is not as efficient as
Bartlett’s test at detecting true differences among variances (85:403). Bart-
lett’s test, however, is very sensitive to nonnormality in general (85:403) and
to long-tailed distributions in particular. Thus, Scheffé developed a test in
which each sample is divided into two or more subsamples; the variance is
calculated for each subsample, and an ANOVA conducted on the log-
transformed variance estimates (62, 85). This test, or a minor modification of
it, has been widely used in FA analyses (3, 29, 32, 47, 48, 103). Finally,
Levene’s test is an analysis of variance on the absolute deviations from the
population means. This test has the advantage of being much less sensitive to
nonnormality than Bartlett’s test (see example 13.11 in 84).

A rather unusual test for heterogeneity of variances, the Box-Cox test offers
a combination of the above analyses. It utilizes transformations that are
commonly used to make variances homogeneous. For example, if the vari-
ance o2 is proportional to the mean, as-in a Poisson distribution, then the
square root transformation homogenizes the variances. If, on the other hand,
the standard deviation o is proportional to the mean, then the log transforma-
tion is correct. Box & Cox (11) provide a method to determine which value of
the parameter A yields the most appropriate power transformation from the
family:

YA -1
— A *#0
yr =

log Y, A=0

This family contains both the square root transformation (A = 0). One of the
major advantages to such an analysis is that confidence levels on A may be
determined. However, this transformation has two serious limitations, one
theoretical and one practical. First, a critical assumption of this test is that the
transformed data are normally distributed; nonnormality may result in statis-
tical significance even if the original data had equal variances. Second, from a
practical perspective very few commercially available statistical packages
contain this test; it may be found, for grouped data only, in the statistical
package accompanying Biometry (85).

All of the above tests for single and multiple traits, however, determine
only if FA differs significantly among samples; they do not test for the
significance of an association between FA and any extrinsic factors. To
determine if FA varies significantly as a function of some factor—for ex-
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ample, stress (97) or heterozygosity (44, 50, 87, 100)—either regression
analysis of FA (best weighted by sample size or degrees of freedom) or a
nonparametric equivalent (Kendall’s Tau or Spearman’s rank correlation; 85,
18) may be used. Because each measure of FA for a sample estimates a
variance (the variance of R — L), and because the confidence in such an
estimate is a function of the sample size, each FA estimate should be weighted
by its sample size (for discussions of weighted regressions, see 27).

MULTIPLE TRAITS PER INDIVIDUAL When multiple traits have been mea-
sured on each individual, both the Scheffé-Box test and Levene’s test dis-
cussed above may be conducted as single classification ANOVAs for each
trait. The additional power derived from measuring several characters as
opposed to one is achieved by comparing the concordance of their variation
among samples. Kendall’s concordance test (85), on the values of FA ranked
for each character across samples, allows the overall significance of FA
variation to be determined. It has been the most commonly used test for the
presence of Soulé’s (86) ‘population asymmetry parameter’ (32, 40, 41, 50,
64, 69, 86, 87). -

PATTERNS OF VARIATION IN FLUCTUATING
ASYMMETRY

FA and Heterozygosity: Estimating Genomic Heterozygosity
from Protein Variation

The level of FA has been correlated frequently with heterozygosity as that is
determined from protein variation (see the summary in Table 4 below). Most
commonly, populations of higher heterozygosity exhibit lower FA, but in
some cases within populations, individuals heterozygous at more loci are less
asymmetrical. Because genomic heterozygosity is argued to have a major
influence on developmental stability (25, 26, 55, 88, 90, 93), the association
of FA with protein heterozygosity raises an important question: To what
degree does heterozygosity at a few protein loci predict genomic heterozygos-
ity?

In general, an arbitrary sample of loci in an individual is a poor predictor of
genomic heterozygosity (15, 68). For example, for an average genomic
heterozygosity of 0.07, the correlation across individuals between the average
heterozygosity in a sample of 20 loci and the genomic heterozygosity for a
genome of 10,000 loci is only r = 0.054 (using Equation 8 in 15). Three
conditions, however, permit some information on genomic heterozygosity of
an individual to be inferred from the heterozygosity observed at one or a few
loci of that individual: (@) the presence of large amounts of linkage disequilib-
rium, (b) the presence of inbreeding, and (c) the presence of nonrandom
mating due to small population size.
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ESTIMATING GENOMIC HETEROZYGOSITY WITH LINKAGE DISEQUI-
LIBRIUM Consider an extreme example of linkage disequilibrium where the
genome is arranged into large blocks of tightly linked genes with one set of
alleles in one block and a different set in another. It is then intuitively obvious
that the amount of heterozygosity at a few loci will be a strong predictor of
genomic heterozygosity. Recent evidence suggests that electrophoretic mark-
ers on chromosome segments more distal to the centromere are more
heterozygous than proximal ones. Indeed they may mark blocks of linked loci
in salmonid fishes (50, 52). Rather provocatively, heterozygotes at these
distal loci show a greater negative correlation with FA than do heterozygotes
more proximal to the centromere (50).

Even the presence of linkage disequilibrium between two loci, however,
does not necessarily mean that being heterozygous at one locus implies
increased probability of being heterozygous at a second. For two loci A and B,
such an inference may be drawn only if Prob(both A and B are heterozygous) /
Prob(A is heterozygous) > Prob(B is heterozygous). With substitutions of the
appropriate values and after some manipulations this reduces to:

PIX -1V (2X - 1)>q¢lX -1 QY-D, 5.

where p, and g, are the frequencies of alleles A; and A, respectively, and X is
the conditional frequency of carrying allele B;, given that an individual
carries A, and that Y is the conditional frequency of carrying B, given A, (the
same conditional frequencies for allele B, are 1 — X and 1 — Y respectively).
With this parameterization, the linkage disequilibrium is given by D = pq;(X
— Y). The relevant point here is that this inequality may not be satisfied if the
common allele at one locus is associated with the rare allele at the other. For
example, if p; = 0.8, ¢; = 0.2, X = 0.25, and Y = 0, then the frequencies of
alleles B; and B, will be p, = 0.2 and ¢, = 0.8, and the inequality of
Equation 5 is not satisfied. Since Prob(both A and B are heterozygous) = 0.08
and Prob(A is heterozygous) = 0.32, the conditional probability that B is
heterozygous given A heterozygous is 0.25, which is less than Prob(B is
heterozygous) = 0.32.

ESTIMATING GENOMIC HETEROZYGOSITY WITH INBREEDING Inbreeding
also allows inference of genomic heterozygosity from a few loci. If a popula-
tion exhibits regular inbreeding, the more heterozygous an individual is at a
few measured loci, the less likely that the individual is a product of inbreeding
and, hence, the more likely it is heterozygous at other loci. More precisely,
assume for two unlinked loci in a partial selfing population (104) a proportion
T =1 — S of outcrossing and frequencies of alleles represented as B, and B,
of p, and g, respectively. For these assumptions, the probability that the B
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locus will be heterozygous in an individual given that the A locus is
heterozygous is:

22— 9)
2 —_— .
PZ‘IZ{ 4—S ] > 6
This should be compared to:
2(1 = 9)
2 —_—, 7.
P2‘I2[ 2 - g ]

which is the expected probability of being heterozygous at locus B, under a
partial selfing model, when nothing is known abut heterozygosity at other
loci. Clearly, as S — 1, the expected probability of being heterozygous at
locus B, given that locus A is heterozygous, approaches 4p,q,/3 (Equation 6),
whereas in the absence of any information about other loci (Equation 7), the
probability of being heterozygous at B approaches 0. Note, however, that an
excess of homozygotes is expected at each locus in such a population; hence,
in the absence of any deviation from Hardy-Weinberg equilibrium, inbreeding
cannot be invoked to account for an increased ability to predict genomic
heterozygosity from a small, arbitrary sample of loci.

ESTIMATING GENOMIC HETEROZYGOSITY WITH SMALL POPULATION
sizé If a population within which there is random mating is small, then
information about genomic heterozygosity may also be gained from measur-
ing heterozygosity at a few loci. In this situation, an individual within a
particular population will be more closely related to some individuals than
others. Consider an extreme example in which a population has been created
with two unrelated hermaphroditic individuals taken at random from a larger
population whose frequency of alleles B, and B, was p, and g, respectively.
If gametes from these two individuals fuse at random (i.e. each individual
may mate either with itself or with its partner), then on average across all
such populations composed of two individuals, an offspring may with prob-
ability 1/2 be a product of outcrossing or with probability 1/2 be a product
of selfing. Offspring that are selfed will be on average half as heterozy-
gous (p»q,) as those that are outcrossed (2p,q,). Thus, if an offspring is
heterozygous at locus A, it has a probability 2/3 of being a product of out-
crossing and 1/3 of being a product of selfing. Consequently, if heterozy-
gous at locus A, this offspring has a probability of being heterozygous at
locus B of:
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2 1 5

[5(2172‘12) + E(quz)] = g(2p2q2) 8.
compared to:

l(2 )|t l(P )| = 3(2 ) 9

) P292 ) 292 4 P292) .

which is the probability of being heterozygous at the B locus in the absence of
any knowledge about the A locus.

CORRELATIONS BETWEEN ELECTROPHORETIC AND GENOMIC HETEROZY-
GOSITY IN NATURAL POPULATIONS The statistically significant negative
association between the asymmetry of an individual and its heterozygosity as
estimated by 11 protein loci in salmonid fishes (49, 50) offers an opportunity
to test for the departures from multilocus equilibrium outlined above, since it
seems unlikely that heterozygosity at the particular loci examined would be
directly responsible for the observed differences in FA. An examination of
some of the raw data from Leary et al (50) revealed no such disequilibrium:
The heterozygosity at 5 of the 11 loci in Arlee rainbow trout did not predict
the heterozygosity at the remaining 6 loci (N= 160). These 11 protein loci are
unlinked (50), and as indicated above, the location of some of these loci more
distally from the centromere may link them to blocks of more highly
heterozygous loci (50, 52).

FA and Heterozygosity: Patterns in Natural Populations

WITHIN- VERSUS AMONG-POPULATION CORRELATIONS  Assuming that the
level of FA is a product of the level of heterozygosity at some subset of loci in
the genome, are there any patterns of FA variation that can be predicted
without actually estimating genomic heterozygosity? Using some rather sim-
ple assumptions about the distributions of heterozygosities within a popula-
tion, we show below that differences in asymmetry may be more readily
detectable between individuals drawn from different populations than be-
tween individuals drawn from the same population.

To illustrate, consider a sample of n loci from a genome, where the average
heterozygosity per locus is H and where the variance of H across loci is o’
The heterozygosity H of these samples will be normally distributed with
variance [H(1 — H) — o?)/n (15). Also, if it is assumed that the heterozygos-
ity at each locus is determined only by mutation (u) and random drift, then the
mean heterozygosity of an individual will be ©/(1 + ©) with a variance
20/[(1 + 6’2 + 6) (3 + O)], where O = 4Nu, with N the population size
and w the mutation rate (28).
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Under these assumptions, the distribution of heterozygosities in a sample of
individuals as a function of genome size (Figure 3) reveals that if the level of
FA in an individual was determined directly by the heterozygosity at 100 loci
(equivalent to assuming a genome size of 100), and if the average
heterozygosities differed by only 0.1 (e.g. 0.7 and 0.8, Figure 3), the
asymmetries probably would not differ significantly between a pair of in-
dividuals, one drawn from each population. If, however, the level of FA was
determined by the heterozygosity at 10,000 loci then the same two individuals
would almost certainly exhibit different levels of asymmetry.

This analysis suggests that differences in FA should be detected more
readily between a pair of individuals drawn from different populations than
between a pair drawn from the same population unless the level of FA is
determined by only a few loci. Such a pattern has frequently been found:
Numerous studies have detected a significant concordance of FA of different
characters across populations and yet detected little or no concordance across
individuals (compare Patterns 4 and 5, Table 4). A particularly striking
example of this pattern occurs in Mason et al’s study (64) of wing pattern
variation in a nymphalid butterfly (detailed in Palmer, 71). It is possible that
this difference in the pattern of FA variation within versus among populations

300 | H
n=10,000
.. 200}
O
c
()]
>
O
o
“ oot
n=1,000
n=100
/ 1
02 04 06 08 10 12 1|4

Heterozygosity

Figure 3 The distribution of individual heterozygosities as a function of the size of the genome
determining the level of FA, for two mean heterozygosities and three genome sizes (n, number of
loci per individual). Computed from Equation 8 of Chakraborty (15).
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Table 4 Patterns of variation in fluctuating asymmetry
Study consistent with pattern?
Pattern of variation Yes No Ambiguous
1. Decreased FA with increased 10, 44°, 51, 502
heterozygosity among popu- 53, 87, 100
lations
2. Decreased FA with increased 49, 50° 502 502
heterozygosity among indi-
viduals
3. Significant FA variation among 2, 42, 46f,
populations or species 69, 77",
1038
4. FA concordant for multiple 29, 412, 334, 40, 41°, 64, 3f, 72, 71°
characters among populations 441, 69, 86, 982, 100*
89, 98°,
100*
5. FA concordant for multiple 91 3f, 30, 39, 47", 64, 69
characters among individuals 70, 77k,
within populations 86, 89, 95",
96, 99, 100°
6. Increased FA in inbred versus 9, 80 5, 6,91
wild populations
7. Increased FA with increased in- oh 65", 91, 8, 12°P, 102 76"
breeding 93, 94
8. Increased FA in hybrid versus 32, 52, 105 29, 40
parental species
9. Decreased FA in hybrid versus 47, 65, 175, 73, 93 6, 9, 92
parental strains 76
10. Increased FA in phenotypically 50, 90? 90¢ 90¢
more extreme individuals
11. Increased FA in male vs female 13, 65", 76 9, 30°, 33h, 34, 47
36, 43¢
12. Increased FA with strong di- 94 48
rectional selection
13. Increased FA with increased 8P, 79, 81°, 5 3f 9 12,
systemic stress 82°, 97 38™, 41f,
80", 83, 93

2True for only one of species examined
®True for only two of species examined
©True for only three of species examined
4True for only four of species examined

¢Two species examined
fThree species examined
8 Five species examined
"Two or more strains examined

'Compared among years
JCalculated from data in tables
kAmong leaves within a plant
!Cited in 32

™ Cited in 41

"Cited in 42

°Cited in 80

PCited in 87
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is due to different environmental effects experienced among populations (for
example ‘stress’; see Pattern 13, Table 4). Unfortunately that possibility can
not be ruled out with these data.

Other Patterns

A remarkable variety of patterns of FA variation have been reported (Table
4). In addition to the associations with heterozygosity (Patterns 1 and 2, Table
4) and the concordance of FA among versus within populations (Patterns 3-5)
described above, several other patterns are worth noting. First, FA tends to
increase with increased inbreeding (Patterns 6 and 7), although not all studies
have yielded consistent results. Increased FA here is consistent with a decline
in heterozygosity but could also have resulted from an increased expression of
recessives alleles with lower canalizing ability. Second, FA increases in
hybrid species compared to parental ones (Pattern 8), while at the same time
hybrids between inbred strains exhibit lower FA than offspring from pure
parental crosses (Pattern 9). The most likely explanation for these apparently
contradictory results is that any increased buffering resulting from increased
heterozygosity in between-species hybrids was outweighed by the disruption
of the ‘coadapted gene complexes’ in each of the parental species (24, 32,
52). However, increased FA was not observed in natural hybrid populations
of either bluegill sunfish (29) or an iguanid lizard (40). Third, a variety of
organisms also exhibited increased FA among more phenotypically extreme
individuals, but this pattern had numerous exceptions (Pattern 10). Finally,
the effects of sex (Pattern 11; males expected to have higher FA due to
hemizygosity of loci on the X chromosome), strong directional selection
[Pattern 12; increased FA expected with increased directional selection for
other characters because directional selection tends to eliminate genetic vari-
ability (14; 48)], and systemic stress (Pattern 13) were all quite variable
among studies.

A notable feature of this summary is the widespread lack of consistency
among studies. Although some patterns are moderately consistent (Patterns
1-5, Table 4), exceptions are present for nearly all. This lack of consistency
among studies emphasizes what many authors have hinted at in discussions of
their data: FA as a measure of developmental stability is a very small signal
easily lost in a tumultuous sea of entropic forces. We hope our clarification of
FA indexes and analyses helps reduce the entropy that is introduced by using
analytical tools of variable precision.

POSSIBLE ADDITIONAL APPLICATIONS OF
FLUCTUATING ASYMMETRY

In spite of the inconsistencies lamented above, are there any as yet untried
applications of FA variation that might be of value as tools for evolutionary
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inference? We note three worth exploring. First, if, by whatever causal
mechanism, FA is correlated negatively with heterozygosity under most
circumstances (Patterns 1 and 2, Table 4), then the possibility exists that
differences in the level of FA may be used to infer relative differences
in genetic variability among closely related contemporaneous populations
or between ancestral and descendent ones of species in the fossil record (see
71).

Second, on a larger scale, D. Jablonski has suggested to us that if the level
of FA reflects degree of canalization (65, 88, 101), then perhaps FA could be
used to test for the evolution of increased canalizing ability within taxa (e.g.
trilobites, brachiopods) over the first several million years of metazoan
evolution. Finally, again assuming FA reflects degree of canalization, com-
parison of levels of FA among traits within single species may reveal dif-
ferences in the strength of selection for canalization of different traits: pre-
sumably, characters of greater functional significance to the organism would
be subject to stronger selection for canalization. In other words, differences in
FA among characters may provide a way of ranking traits in terms of their
functional significance to an organism with little or no a priori knowledge of
how those characters actually function. These rankings could then be tested
experimentally. Although hinted at (2, 43, 48, 51, 69, 90), an explicit
application of this approach has not yet been found.
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