K.B. Marchinko and A.R. Palmer

Species/Trait/Site		OLS Regression	n Equations	Body Size (prosor	Body Size $(prosomal wet mass, g)^1$			
	n	Slope (SE)	Intercept (SE)	r ²	P (slope)	Mean (SE)	Min	Max
Balanus glandula								
Ramus length								
Grappler Narrows	10	0.293 (0.017)	1.297 (0.037)	0.974	< 0.0001	0.0133 (0.0035)	0.0006	0.0318
Grappler Mouth	10	0.247 (0.017)	1.189 (0.034)	0.964	< 0.0001	0.0241 (0.0079)	0.0019	0.0758
Bamfield Inlet	10	0.337 (0.033)	1.292 (0.067)	0.929	< 0.0001	0.0205 (0.0059)	0.0014	0.0544
Self Pt.	10	0.287 (0.021)	1.066 (0.043)	0.961	< 0.0001	0.0161 (0.0048)	0.0011	0.0451
Kelp Bay	10	0.324 (0.038)	1.096 (0.077)	0.898	< 0.0001	0.0175 (0.0044)	0.0016	0.0409
Seppings Is.	10	0.296 (0.028)	1.028 (0.060)	0.932	< 0.0001	0.0165 (0.0047)	0.0012	0.0376
Bordelais Is.	10	0.215 (0.024)	0.861 (0.052)	0.910	< 0.0001	0.0125 (0.0035)	0.0008	0.0324
Seta length								
Grappler Narrows	10	0.216 (0.015)	0.211 (0.033)	0.963	< 0.0001	_	_	_
Grappler Mouth	10	0.189 (0.022)	0.145 (0.044)	0.901	< 0.0001	_	_	_
Bamfield Inlet	10	0.225 (0.025)	0.137(0.051)	0.911	< 0.0001	_	_	_
Self Pt	10	0.179(0.023)	-0.034(0.048)	0.886	<0.0001	_	_	_
Keln Bay	10	0 233 (0 026)	0.005(0.052)	0.904	<0.0001	_	_	_
Seppings Is	10	0.233(0.020) 0.231(0.017)	0.049(0.032)	0.958	<0.0001	_	_	_
Bordelais Is	10	0.251(0.017) 0.159(0.026)	-0.099(0.050)	0.930	0.0003			
Doruciais is.	10	0.139 (0.020)	-0.099(0.037)	0.820	0.0005			
Intersetal space	10	0.00((0.000)	1.004 (0.072)	0.00(0.0002			
Grappler Narrows	10	0.206 (0.033)	-1.094 (0.073)	0.826	0.0003	-	_	-
Grappler Mouth	10	0.102 (0.030)	-1.414 (0.058)	0.599	0.0086	-	_	-
Bamfield Inlet	10	0.161 (0.033)	-1.314 (0.066)	0.755	0.0011	-	_	_
Self Pt.	10	0.187 (0.026)	-1.327 (0.055)	0.866	< 0.0001	-	_	-
Kelp Bay	10	0.201 (0.041)	-1.317 (0.082)	0.749	0.0012	_	_	_
Seppings Is.	10	0.072 (0.024)	-1.558 (0.050)	0.536	0.0161	-	_	_
Bordelais Is.	10	0.090 (0.045)	-1.517 (0.097)	0.334	0.0802	-	_	-
Ramus diameter								
Grappler Narrows	10	0.194 (0.017)	-0.381(0.038)	0.940	< 0.0001	_	_	_
Grappler Mouth	10	0.241(0.023)	-0.284(0.045)	0.935	<0.0001	_	_	_
Bamfield Inlet	10	0.243(0.025)	-0.267(0.051)	0.923	<0.0001	_	_	_
Self Pt	10	0.213(0.029) 0.207(0.029)	-0.228(0.060)	0.867	<0.0001	_	_	_
Keln Bay	10	0.267(0.029) 0.265(0.024)	-0.157(0.047)	0.940	<0.0001	_	_	_
Seppings Is	10	0.203(0.024) 0.248(0.031)	-0.157(0.047) -0.155(0.065)	0.889	<0.0001			
Bordelais Is	10	0.246(0.051) 0.226(0.017)	-0.133(0.003) -0.184(0.037)	0.007	<0.0001			
Dordenuis 15.	10	0.220 (0.017)	0.101 (0.057)	0.957	\$0.0001			
Chthamalus dalli								
Ramus length								
Grappler Mouth	10	0.265 (0.071)	1.139 (0.200)	0.636	0.0057	0.0017 (0.0003)	0.0008	0.0030
Bamfield Inlet	10	0.253 (0.057)	0.983 (0.163)	0.709	0.0023	0.0017 (0.0003)	0.0007	0.0031
Self Pt.	10	0.350 (0.121)	1.068 (0.340)	0.511	0.0202	0.0018 (0.0003)	0.0008	0.0039
Kelp Bay	10	0.220 (0.058)	0.729 (0.156)	0.644	0.0052	0.0023 (0.0004)	0.0013	0.0054
Seppings Is.	10	0.256 (0.040)	0.893 (0.111)	0.834	0.0002	0.0021 (0.0004)	0.0009	0.0044
Bordelais Is.	10	0.221 (0.052)	0.714 (0.134)	0.690	0.0029	0.0031 (0.0005)	0.0014	0.0059
Sata lanath								
Seta length	10	0.145(0.024)	0.145 (0.005)	0.600	0.0026			
Grappier Mouth	10	0.145(0.054)	-0.145(0.095)	0.699	0.0026	-	_	_
Bamfield Inlet	10	0.206 (0.055)	-0.066 (0.158)	0.634	0.0059	-	—	_
Self Pt.	10	0.217 (0.112)	-0.146 (0.313)	0.322	0.0873	-	_	-
Kelp Bay	10	0.166 (0.068)	-0.268 (0.185)	0.424	0.0413	-	-	-
Seppings Is.	10	0.161 (0.051)	-0.250 (0.141)	0.555	0.0134	-	_	_
Bordelais Is.	10	0.261 (0.071)	-0.046 (0.183)	0.628	0.0062	-	-	-
Intersetal space								
Grappler Mouth	10	0.277 (0.096)	-0.979(0.270)	0.512	0.0199	_	_	_
Bamfield Inlet	10	0.314 (0.075)	-0.919 (0.212)	0.689	0.0030	_	_	_
Self Pt	10	0.100(0.159)	-1572(0448)	0.047	0 5480	_	_	_
Keln Bay	10	0.147(0.070)	-1 400 (0 189)	0 354	0.0694	_	_	_
Sennings Is	10	0.050 (0.066)	_1 597 (0 182)	0.066	0 4721	_	_	_
Bordelais Is	10	0.182 (0.128)	-1.301(0.328)	0.203	0 1013	_	_	_
	10	0.102 (0.120)	-1.501 (0.520)	0.205	0.1713	-		_
Ramus diameter								
Grappler Mouth	10	0.149 (0.056)	-0.546 (0.158)	0.469	0.0288	-	-	-
Bamfield Inlet	10	0.104 (0.027)	-0.708 (0.077)	0.650	0.0048	-	_	-

Appendix 1. Ordinary least squares (OLS) regression equations for the relationship between four cirral dimensions (ramus length, seta length, intersetal space and ramus diameter) and body mass for leg 6.

Zoology 106 (2003) 2

Appendix 1. continued.

Species/Trait/Site		OLS Regression	Equations			Body Size $(prosomal wet mass, g)^1$		
	n	Slope (SE)	Intercept (SE)	r^2	P (slope)	Mean (SE)	Min	Max
Self Pt.	10	0.302 (0.095)	-0.118 (0.266)	0.560	0.0127	_	_	_
Kelp Bay	10	0.178 (0.073)	-0.455 (0.197)	0.426	0.0408	_	_	_
Seppings Is.	10	0.186 (0.039)	-0.365 (0.107)	0.743	0.0013	-	_	_
Bordelais Is.	10	0.142 (0.051)	-0.475 (0.130)	0.495	0.0233	_	-	_
Semibalanus cariosus								
Ramus length								
Grappler Narrows	10	0.180 (0.035)	1.045 (0.039)	0.764	0.0009	0.1556 (0.0457)	0.0186	0.4137
Bamfield Inlet	10	0.204 (0.061)	1.101 (0.073)	0.585	0.0100	0.1152 (0.0315)	0.0141	0.3134
Self Pt.	10	0.243 (0.036)	1.025 (0.040)	0.850	0.0001	0.1169 (0.0217)	0.0134	0.2361
Kelp Bay	10	0.283 (0.026)	1.092 (0.031)	0.934	< 0.0001	0.1504 (0.0485)	0.0123	0.4269
Seppings Is.	10	0.203 (0.027)	0.958 (0.030)	0.877	< 0.0001	0.1558 (0.0418)	0.0117	0.4027
Bordelais Is.	10	0.277 (0.051)	1.017 (0.064)	0.788	0.0006	0.0908 (0.0244)	0.0135	0.2308
Seta length								
Grappler Narrows	10	0.139 (0.032)	-0.005 (0.035)	0.707	0.0023	-	_	_
Bamfield Inlet	10	0.124 (0.042)	-0.018 (0.050)	0.518	0.0190	-	_	_
Self Pt.	10	0.166 (0.033)	-0.061 (0.036)	0.757	0.0011	-	_	_
Kelp Bay	10	0.142 (0.027)	-0.100 (0.031)	0.777	0.0007	-	_	_
Seppings Is.	10	0.135 (0.023)	-0.115 (0.026)	0.807	0.0004	_	_	_
Bordelais Is.	10	0.185 (0.031)	-0.100 (0.039)	0.816	0.0003	_	-	_
Intersetal space								
Grappler Narrows	10	0.118 (0.044)	-1.329(0.049)	0.474	0.0277	_	_	_
Bamfield Inlet	10	0.046 (0.039)	-1.461(0.046)	0.152	0.2656	_	_	_
Self Pt	10	0.218 (0.038)	-1.282(0.042)	0.801	0.0005	_	_	_
Keln Bay	10	0.057(0.049)	-1.497(0.057)	0.144	0 2791	_	_	_
Seppings Is	10	0.037(0.01))	-1.480(0.034)	0.034	0.6095	_	_	_
Bordelais Is.	10	0.021 (0.045)	-1.645(0.056)	0.026	0.6558	_	_	_
Ramus diameter								
Grappler Narrows	10	0.255 (0.056)	-0.242(0.062)	0 720	0.0019	_	_	_
Bamfield Inlet	10	0.222 (0.030) 0.211 (0.039)	-0.305(0.047)	0.786	0.0006	_	_	_
Self Pt	10	0.254 (-0.211)	-0.211(0.022)	0.951	<0.0000	_	_	_
Keln Bay	10	0.254 (-0.211) 0.250 (0.013)	-0.211(0.022) 0.154(0.015)	0.991	<0.0001	—	_	_
Seppings Is	10	0.230(0.013) 0.210(0.020)	-0.134(0.013) 0.211(0.032)	0.900	<0.0001			
Bordelais Is.	10	0.226 (0.042)	-0.173(0.052)	0.786	0.0006	_	_	_
Pollicinas polymarus		· · · · ·						
Pamus length								
Self Pt	10	0.251 (0.026)	1 206 (0.018)	0.010	<0.0001	0 3107 (0 0660)	0.0676	0.6130
Koln Day	10	0.251(0.020) 0.258(0.018)	1.200(0.018) 1.208(0.014)	0.919	<0.0001	0.3197(0.0000) 0.3566(0.0886)	0.0070	0.0139
Kelp Day	10	0.238(0.018) 0.250(0.022)	1.206(0.014) 1.160(0.018)	0.901	<0.0001	0.3300(0.0600)	0.0401	0.6923
Seppings is.	10	0.239(0.023)	1.109 (0.018)	0.939	<0.0001	0.2847(0.0073)	0.0581	0.0130
Bordelais is.	10	0.290 (0.018)	1.185 (0.014)	0.970	<0.0001	0.3197 (0.0742)	0.0551	0.0988
Seta length	10	0 170 (0 000)	0.010 (0.015)	0.000	0.0001			
Self Pt.	10	0.172 (0.022)	0.219 (0.015)	0.888	<0.0001	-	_	—
Kelp Bay	10	0.170 (0.017)	0.209 (0.012)	0.927	<0.0001	-	_	_
Seppings Is.	10	0.131 (0.024)	0.162 (0.018)	0.791	0.0006	-	-	-
Bordelais Is.	10	0.160 (0.040)	0.152 (0.031)	0.663	0.0041	-	-	-
Intersetal space	10							
Self Pt.	10	0.211 (0.036)	-0.962 (0.024)	0.813	0.0004	-	-	-
Kelp Bay	10	0.183 (0.021)	-0.981 (0.016)	0.901	<0.0001	-	-	-
Seppings Is.	10	0.167 (0.031)	-0.963 (0.024)	0.781	0.0007	-	_	-
Bordelais Is.	10	0.177 (0.025)	-0.947 (0.019)	0.861	0.0001	_	-	-
Ramus diameter								
Self Pt.	10	0.317 (0.030)	0.084 (0.020)	0.935	< 0.0001	-	-	-
Kelp Bay	10	0.277 (0.025)	0.058 (0.019)	0.938	< 0.0001	_	_	-
Seppings Is.	10	0.291 (0.018)	0.104 (0.014)	0.970	< 0.0001	-	_	-
Bordelais Is.	10	0.312 (0.026)	0.093 (0.020)	0.947	< 0.0001	_	-	-

¹Mean prosonal wet mass was the same for all traits within a species.

Zoology 106 (2003) 2

K. B. Marchinko and A. R. Palmer

Appendix 2a. Ordinary least squares (OLS) regression equations of the relationship of log (rands length) to water velocity for legs	4,
5, and 6 (see Fig. 3).	

Species	Leg	OLS Regression Equations						
		n	Slope (SE)	Intercept (SE)	r ²	P (slope)		
Balanus glandula	Leg 6	7	-0.058 (0.008)	0.663 (0.021)	0.921	0.0006		
	Leg 5	7	-0.055 (0.010)	0.635 (0.027)	0.866	0.0023		
	Leg 4	7	-0.055 (0.008)	0.559 (0.023)	0.903	0.0010		
Chthamalus dalli	Leg 6	6	-0.051 (0.018)	0.329 (0.055)	0.665	0.0480		
	Leg 5	6	-0.045 (0.016)	0.301 (0.049)	0.655	0.0509		
	Leg 4	6	-0.038 (0.014)	0.226 (0.043)	0.640	0.0560		
Semibalanus cariosus	Leg 6	6	-0.031 (0.005)	0.866 (0.015)	0.913	0.0029		
	Leg 5	6	-0.029(0.005)	0.846 (0.015)	0.895	0.0043		
	Leg 4	6	-0.025 (0.004)	0.754 (0.013)	0.893	0.0045		
Pollicipes polymerus	Leg 6	4	-0.029 (0.006)	1.127 (0.022)	0.921	0.0402		
	Leg 5	4	-0.022(0.008)	1.089 (0.031)	0.770	0.1221		
	Leg 4	4	-0.016 (0.007)	1.025 (0.027)	0.694	0.1670		

Appendix 2b. OLS regression equations for the log-linear relationship of cirral dimensions of leg 6 to water velocity (see Fig. 4)

Cirral trait	Species	n	Slope (SE)	Intercept (SE)	r^2	P (slope)
Log (ramus length)	Balanus glandula	7	-0.058 (0.008)	0.663 (0.021)	0.921	0.0006
	Chthamalus dalli	6	-0.051 (0.018)	0.329 (0.055)	0.665	0.0480
	Semibalanus cariosus	6	-0.031 (0.005)	0.866 (0.015)	0.913	0.0029
	Pollicipes polymerus	4	-0.029 (0.006)	1.127 (0.022)	0.921	0.0402
Log(seta length)	Balanus glandula	7	-0.040 (0.009)	-0.267 (0.024)	0.816	0.0053
	Chthamalus dalli	6	-0.034 (0.012)	-0.599 (0.036)	0.665	0.0480
	Semibalanus cariosus	6	-0.030 (0.004)	-0.154 (0.011)	0.940	0.0014
	Pollicipes polymerus	4	-0.027 (0.011)	0.183 (0.042)	0.736	0.1423
Log(intersetal space)	Balanus glandula	7	-0.019 (0.004)	-1.631 (0.012)	0.802	0.0064
	Chthamalus dalli	6	-0.002 (0.010)	-1.782 (0.030)	0.006	0.8832
	Semibalanus cariosus	6	-0.022 (0.014)	-1.478 (0.043)	0.381	0.1920
	Pollicipes polymerus	4	0.021 (0.006)	-1.155 (0.023)	0.853	0.0765
Log(ramus diameter)	Balanus glandula	7	0.028 (0.005)	-0.761 (0.013)	0.880	0.0018
	Chthamalus dalli	6	0.020 (0.006)	-0.979 (0.019)	0.718	0.0333
	Semibalanus cariosus	6	0.023 (0.005)	-0.523 (0.014)	0.855	0.0083
	Pollicipes polymerus	4	0.016 (0.008)	-0.164 (0.031)	0.645	0.1968

Appendix 3. Results from ANCOVA testing for differences in trait means and equality of slopes (prosomal wet mass = covariate) of four cirral traits among populations of *Balanus glandula*, *Chthamalus dalli*, *Semibalanus carious* and *Pollicipes polymerus*. Populations of each species were from habitats differing in wave exposure. Cirral traits and prosomal wet mass were log-transformed.

Species + Leg	Source of variation	Mean Square						
		df ¹	Ramus length	Setae length	Intersetal space	Ramus diameter		
Balanus glandula								
Leg 6	Population (POP)	6	0.149 ***	0.081 ***	0.019 ***	0.036 ***		
U	Log[wet mass] (WM)	1	1.584 ***	0.802 ***	0.407 ***	1.025 ***		
	Error	62	0.002	0.001	0.004	0.002		
	Equality of slopes ²	6	0.005 *3	0.002	0.009 *3	0.002		
Leg 5	POP	6	0.142 ***	0.088 ***	0.023 ***	0.045 ***		
C	WM	1	1.664 ***	0.796 ***	0.384 ***	1.059 ***		
	Error	62	0.003	0.001	0.003	0.003		
	Equality of slopes ²	6	0.006	0.003 *3	0.006 *3	0.004		

Barnacle leg morphology

Appendix 3. continued.

Species + Leg	Source of variation	Mean Square					
		df^1	Ramus length	Setae length	Intersetal space	Ramus diameter	
Leg 4	POP	6	0.138 ***	0.103 ***	0.007	0.028 ***	
0	WM	1	1.780 ***	0.989 ***	0.409 ***	0.997 ***	
	Error	62	0.002	0.002	0.003	0.002	
	Equality of slopes ²	6	0.022 *3	0.004 *3	0.010 *3	0.001	
Chthamalus dalli							
Leg 6	(POP)	5	0.147 ***	0.063 ***	0.016 *	0.020 ***	
	(WM)	1	0.192 ***	0.105 ***	0.093 ***	0.085 ***	
	Error	53	0.002	0.002	0.005	0.002	
	Equality of slopes ²	5	0.001	0.001	0.005	0.002	
Leg 5	POP	5	0.113 ***	0.058 ***	0.025 ***	0.017 ***	
e	WM	1	0.176 ***	0.104 ***	0.033 **	0.106 ***	
	Error	53	0.002	0.001	0.003	0.001	
	Equality of slopes ²	5	0.001	0.001	0.002	0.002	
Leg 4	POP	5	0.083 ***	0.040 ***	0.012 *	0.015 ***	
e	WM	1	0.198 ***	0.104 ***	0.037 **	0.123 ***	
	Error	53	0.001	0.002	0.004	0.001	
	Equality of slopes ²	5	0.001	0.001	0.002	0.002	
Semibalanus cario	osus						
Leg 6	POP	5	0.042 ***	0.038 ***	0.050 ***	0.024 ***	
	WM	1	0.597 ***	0.238 ***	0.057 ***	0.616 ***	
	Error	53	0.003	0.002	0.004	0.002	
	Equality of slopes ²	5	0.004	0.001	0.009 *3	0.001	
Leg 5	POP	5	0.036 ***	0.042 ***	0.036 ***	0.031 ***	
	WM	1	0.683 ***	0.288 ***	0.124 ***	0.755 ***	
	Error	53	0.003	0.002	0.004	0.002	
	Equality of slopes ²	5	0.003	0.001	0.007	0.0005	
Leg 4	POP	5	0.028 ***	0.032 ***	0.035 ***	0.030 ***	
	WM	1	0.813 ***	0.512 ***	0.114 ***	0.727 ***	
	Error	53	0.002	0.002	0.002	0.002	
	Equality of slopes ²	5	0.002	0.004	0.001	0.002	
Pollicipes polyme	rus						
Leg 6	POP	3	0.006 ***	0.007 **	0.004	0.003	
	WM	1	0.400 ***	0.142 ***	0.190 ***	0.501 ***	
	Error	35	0.001	0.001	0.001	0.001	
	Equality of slopes ²	3	0.0004	0.0005	0.0004	0.001	
Leg 5	POP	3	0.005 **	0.006 **	0.003	0.005	
	WM	1	0.442 ***	0.146 ***	0.231 ***	0.520 ***	
	Error	35	0.001	0.001	0.002	0.001	
	Equality of slopes ²	3	0.001	0.0002	0.0004	0.001	
Leg 4	POP	3	0.003 *	0.006 **	0.007 *	0.004 *	
	WM	1	0.479 ***	0.192 ***	0.294 ***	0.531 ***	
	Error	35	0.001	0.001	0.002	0.0005	
	Equality of slopes ²	3	0.0004	0.0001	0.002	0.001	

*P < 0.05, **P < 0.01, ***P < 0.001.

¹ Main effects and error df and MS exclude non-significant interaction terms. ² When testing for equality of slopes, the error degrees of freedom were 56 for *B. glandula*, 48 for *C. dalli* and *S. cariosus*, and 32 for P. polymerus.

³ Interaction became non-significant after Sequential Bonferroni Correction (three legs = three tests for each species) and original main effects and error df and MS are used in full analysis.