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DEDICATION

This contribution is dedicated to F. James Rohlf on the occasion of his 65th birthday. We
should al emulate his passion for understanding the tools of histrade and for sharing that
understanding so generoudly with students, colleagues and friends.

ABSTRACT

In spite of adecade of furious activity and an increasingly bewildering array of analytical
methods, essential requirements for arobust study of fluctuating asymmetry have not changed:
judicious choice of traits, meticul ous attention to measurement precision, visua inspection and tests
for dubious data, appropriate tests and corrections for size-dependence, confirmation that subtle
deviations from symmetry both exceed those expected due to measurement error and meet the
criteriafor ideal fluctuating asymmetry, and an open mind about aternative hypotheses. We review
these requirements and try to clarify why they are so essential.

Studies of fluctuating asymmetry face a number of serious challenges. a) random
phenotypic variation arises for reasons other than developmental instability, b) all descriptors of FA
estimate a variance and variances are estimated with much lower confidence than means (i.e.,
repeatability islower), ) subtle departures from symmetry are typically so minute they are
exceedingly difficult to measure reliably, d) measurement error and trait size interact in complex and
mischievous ways, and €) tests for departures from normality are uncomfortably weak for small to
modest sample sizes. We outline the foundations of these challenges and some of the ways they
may be addressed.

Persistent efforts to improve analytical tools nonethel ess have yielded some useful
advances. a) log transformations help remove the size-dependence of subtle asymmetries and the
heterogeneity of variance that can arise from this size-dependence, b) proper critical valuesfor the
kurtosis statistic provide more reliable statistical tests, ¢) indexes that combine information from
multiple traits yield more reliable estimates of individua developmental instability, and d) a
generaization of Levene's test improves both the ease and the power of analyses testing for
differencesin fluctuating asymmetry among individuals, traits or groups.

Finaly, as an appendix, we provide a detailed worked example, with commentary, of a
complete FA analysis. It outlines how care and common sense in preliminary analyses greatly
improve therigor of thefinal results. This appendix, and the datafiles for the analyses, are available
as web supplements.
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ABBREVIATIONS

ANOVA: anadysisof variance

DA: directional asymmetry

df: degrees of freedom

DI: developmentd instability

FA: fluctuating asymmetry, average unsigned deviation from symmetry.

FA1, FA4, FA10, etc.: various fluctuating asymmetry indexes as numbered in Palmer (1994); see
asoTables 1, 2.

M1, My, Mg, etc.: aseries of replicate measurements of agiven trait on agiven individual

ME: measurement error

ME1, ME2, MES, etc.: various measurement error indexes as numbered in Table 3.

MS:. mean squares

MSg: between-sides mean squares from asides by individuals ANOVA

SD: standard deviation

R - L: right minus left

X;: observation X onindividua i
X : mean of asample of individual observations (X;)
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) INTRODUCTION

Fluctuating asymmetries are small, random deviations from symmetry of bilaterally
symmetrical traits (Ludwig, 1932). They presumably reflect the residual variation after al the direct
effects of genotype and environment on trait form have been removed (Mather, 1953). Asa
consequence, the average unsigned deviation from symmetry, to which the term fluctuating
asymmetry (FA) typically refers, has achieved prominence as a measure of developmental precision
(Palmer, 1996): the ability of a given genotype to produce the same target phenotype (Nijhout and
Davidowitz, this volume) repeatedly — on opposite sides of the body — under well-defined
environmenta conditions (Zakharov, 1992). Both environmental and genetic stress appear to
increase FA (Leung and Forbes, 1996; Palmer, 1996; Vdllestad et al., 1999; but see critique by
Bjorksten et al., 2000). In addition, the subtle deviations from symmetry that yield FA may aso
relate to individual quality or fitness (Mgller, 1997; Brown and Brown, 1998; and Houle, 1998; but
see comments by Clarke, 1998). For these reasons, FA has been widely studied in many ecological
and evolutionary contexts (Mgller and Swaddle, 1997), athough hints of discomfort about the
validity of published claims have arisen on several fronts (Houle, 1998; Palmer, 1999; Simmons et
al., 1999; Palmer, 2000; Palmer and Hammond, 2000).

Over the last decade, the literature on FA has exploded (Palmer, 2000). In additionto a
flood of data papers (Mdller and Swaddle, 1997), many new analytical methods have been
advanced, along with several critiques of methodological issues. Will refined analytical methods
improve the quality of FA dataand analysis? In some situationsthey may. However, more
sophisticated analyses will never compensate for poor data or oppy thinking. Below wetry to
bring some common sense to bear on problems typically encountered in FA analyses.

|.A) DISQUIETING REVELATIONS

Two recent reports suggest some areas of the FA literature may have been compromised by
alarge number of 'false positive results. Firgt, as more studies tested whether FA exceeded
measurement error (ME), fewer and fewer detected significant associations between individual FA
and sexual selection (Simmons et al., 1999). This suggests @) many earlier studies may have
reported fal se positive results, and b) minimizing ME remains asignificant challenge for FA
studies, not only because it weakens results but also because it actually introduces bias in several
insidious ways (Section V.A). Second, a meta-analysis of published associations between FA and
sexual selection revealed direct evidence of selective reporting (Palmer, 1999): the tendency to
publish preferentialy results that are either significant statistically or consistent with expectation
(Palmer, 2000). In addition, some of the more remarkable published reports of correlations with
individual asymmetry in humans — such as with |Q, attractiveness, sexua satisfaction, physical
prowess, individual fecundity, and the timing of ovulation — have invited pointed criticism (Palmer
and Hammond, 2000, see aso http://www.biol ogy.ual berta.ca/palmer.hp/asym/FA/FA-Refs.htm).
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While the reputation of FA has been tarnished by these critiques, it istoo early to dismissit
asauseful tool for inferring developmental instability. Other meta-analyses have reveaed little or
no evidence of selective reporting among studies of other relations, either between FA and stress
(Leung and Forbes, 1997 as re-analyzed in Palmer, 2000) or between FA and heterozygosity
(Vdlestad et al., 1999), even though they did reveal low mean effect sizes and high variability.
Formal replications of prior FA studies would go along way toward returning respectability to the
field (Pamer, 2000).

|.B) SOME ESSENTIAL TERMINOLOGY

The terminology associated with subtle asymmetriesis a challenge for both newcomers and
veterans. Appropriate use of termsfor patterns, which are observable, and terms for presumed
processes, which are inferred, is critical to avoid perpetuating sloppy thinking. Our use of the terms
we use frequently is outlined below. A more complete set of definitionsis availablein Palmer
(1994), Nijhout and Davidowitz (this volume), and the glossary to this book.

1) Termsfor (observable) patterns

fluctuating asymmetry (FA)- apattern of variation of the difference between the right and left
sides (R - L) wherethe variation is normally distributed about a mean of zero.

antisymmetry- a pattern of variation of (R - L) where the variation is distributed about a mean
of zero, but the frequency distribution departs from normality in the direction of
platykurtosis or bimodality.

directional asymmetry (DA)- apattern of variation of (R - L) where the variation is normally
distributed about a mean that is significantly different from zero.

developmental precision- ageneral, neutral term for describing how closely a structure
approachesitsideal or target phenotype (Nijhout and Davidowitz, this volume) for a
particular genotype and growth environment. 1t implies nothing about causation and is not
restricted to bilateral traits. Size-independent (dimensionless) measures of FA (Section
IV.A) offer one measure of developmental precision. The coefficient of variation among
serialy homologous parts of an individua (e.g., legs of an individua millipede), or among
geneticaly identical individuals reared under identical conditions, would be another. Itis
also dimensionless.

2) Termsfor (inferred) processes or causes

developmental noise- random variation in asuite of developmental factors that are the ultimate
cause of subtle deviations from symmetry, including metabolic rates, concentrations of
regulatory molecules, diffusion, thermal noise, and rates of cell division, cell growth and cell
death (see also Nijhout and Davidowitz, thisvolume). Increased developmenta noiseyields
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lower developmental precision and increased FA.

developmental stability- the capacity of anindividual to correct for random perturbations
caused by developmental noise. Increased developmenta stability yields higher
developmental precision and decreased FA.

developmental instability (DI)- the combined contributions of developmenta noise and
developmenta stability that define the expected or hypothetical variance of R-L. Thisterm
is equivalent to the asymmetry potential of M.E. Soule (pers. comm.). Increased DI yields
lower developmenta precision and increased FA, but DI may increase due either to
increases in developmental noise or to decreasesin developmental stability. Thisusage
differs from Pamer (1994) but avoids unintended implications that observed differencesin
FA are dueto differences in developmenta noise versus developmental stability when
nothing is known about the actual causes.

I.C) ANXIETY ABOUT METHODS

A proliferation of methods sometimes suggests adisciplinein turmoil. Where the
biological signa isweak, but the questions alluring, hope springs eternal that increasingly
sophisticated analytical tricks will somehow extract more reliable results from recalcitrant data
Unfortunately, a surfeit of methods may also discourage new studies or leave those unfamiliar with
the detailed pros and cons confused about how best to proceed.

We would be the last to diminish the importance of methodology to studies of FA.
Nonetheless, we believe firmly that the greatest increase in quality of results will come not from
increasingly sophisticated analyses, but rather from a greater awareness that the little things count.
Careful attention to choice of traits (Section 111), measurement protocol and analysis of ME
(Section V.A), detection of outliers (Appendix V), and tests for departures from normality (Section
V.B), coupled with the use of multiple independent simple tests to confirm that results are not
analysis-dependent, will yield more convincing results than recourse to sophisticated methods after
the data have been collected, with the hope that oversightsin design and protocol can somehow be
ameliorated.

Below, we summarize recent methodological and conceptua refinements, in the hopes of
providing a sounder foundation to FA analyses and interpretation. This chapter supplements, rather
than replaces, an earlier FA analysis primer (Palmer, 1994). We hope the worked example provided
in Appendix V will reinforce appreciation of how simple graphical inspections of the data, and afew
elementary tests, are all that are required for awell-conducted study.
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1) FIVE CORE CONCEPTS

I1.A) RANDOM VARIATION = DEVELOPMENTAL INSTABILITY

FA refersto random (normally distributed) variation of the difference between sides (R - L)
about amean of zero. Mot biologists interpret this random variation as evidence of devel opmental
instability (D), because the effects of genotype and environment should be the same for both sides
and therefore cancel out of the difference (Mather, 1953; Van Vaen, 1962; PAmer, 1996).

Unfortunately, even for traits that exhibit ideal FA (see Fig. 1abelow), subtle departures
from symmetry may not be due solely to DI in the conventional meaning of this phrase (Pamer,
1994). We believe thisto be one of the most troubling aspects of FA studies. If departures from
symmetry dueto DI can not be distinguished from those due to random — but repeatable! —
environmental effects on form, FA can not serve as an index of DI.

The problem issimple: observable random variation in atrait may have more than one
cause. Developmental noise undoubtedly contributes to deviations from symmetry, and in some
cases it may be the primary cause. However, random deviations from symmetry may also arise due
to random effects of the environment on phenotypically plastic traits (Section I11.B) or to random
effects of wear and tear (Section [11.B).

For biologically sensible estimates of DI, traits must be selected judicioudy to avoid those
confounding factors (Section I11.D).

I1.B) DEPARTURES FROM SYMMETRY ESTIMATE A VARIANCE . . .

Descriptors of FA estimate avariance, not amean. The greater the underlying DI, the
greater the observed varianceof R - L. Therefore, tests for differencesin FA among individuals,
traits or samples are fundamentally tests for heterogeneity of variance. They are not tests for
differencesin means, in the sense that most biologists understand this. Average asymmetry,
meaning average |R - L|, isjust one convenient way to describe the variance of R - L (see Section
IV.A2 below).

This simple fact makes many of the problems associated with FA analyses painfully
obvious: @) ME increases the variance but not the mean of a sample (Section V.A1l), b) variances
are harder to estimate with confidence than means (Smith et al., 1982), c) differencesin
distribution shape can have large effects on the variance (Section V.Al), d) asingle outlier datum
will have alarger effect on the variance than on the mean (Section V.AL), and €) many testsfor
heterogeneity of variance are quite sengitive to distribution shape (Section VI.A).

11.C) ... WITH ONE DEGREE OF FREEDOM
Asymmetry in asingletrait of abilaterally symmetrical individua yields limited information
about underlying DI because the difference between sides estimates the variance due to DI with
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only one degree of freedom (Palmer, 1994, p. 360; Van Dongen, 1998; Whitlock, 1998), and
estimates of a variance with one degree of freedom have limited statistical power (Smith et al .,
1982). For example, even among a hypothetical group of individuals of identical DI raised under
identical conditions, R - L will still vary simply due to sampling error: by chance, some individuals
will be nearly symmetrical and some may be very asymmetrical. Thislikely accountsfor the
widespread observation that subtle asymmetriesin onetrait rarely correlate with subtle asymmetries
of other traits on the same individuas (Van Vaden, 1962; Soulé and Couzin-Roudy, 1982; Palmer
and Strobeck, 1986; Dufour and Weatherhead, 1996; Mdller and Swaddle, 1997; Houle, 1998).8

Nonetheless, if DI affectsal traitsin an individual similarly, then incorporating deviations
from symmetry from multiple traits should yield greater power to detect differences among
individuals (Section VI.B). Each trait provides an independent estimate of the underlying DI of that
individual and therefore adds another degree of freedom to the estimate, so long as the potentially
confounding effects of variation in trait size are removed (Section 1V.A3).

I1.D) TRAIT COVARIATION AND TRAIT SIZE AFFECT FA

FA isinfluenced not only by the underlying DI, which affects both the right and |eft sides,
but also by negative covariation between the sides and by interactions with trait size.

If we knew the exact size atrait should be for a particular genotype and growth environment
— thetarget phenotype of Nijhout and Davidowitz (this volume) — the coefficient of variation of
that trait for agroup of genetically identical individuals raised under identical environmental
conditions would describe that trait's DI, because all genetic and environmental effects on trait size
were eliminated. Thiswould be true for single, medial traits (e.g., bill length in birds), aswell asfor
one side of apaired, bilateral trait. Under these conditions, all that would be gained by taking the
difference between the sides would be an estimate of DI based on two traits instead of one.

In the real world, of course, both genotype and environment affect trait size, so the variance
inamedid trait like bill length in asample of individuas arises from a complex mixture of the
effects of genotype, environment, and DI. Fortunately, for bilateral traits, genotype and environment
typically affect both sides similarly, so the right and left sides exhibit positive covariation. Thisis
why the variance of the difference between two sides is such a convenient number:

var(R; - Lj)=var(R;) + var(L;) - 2 covar(RjL;) (1)

where covar(RjL;) isthe covariance between R; and L;
covar(RiLj)= &[(Ri - R )(Li- T )]/(N-2) 2)

andwhere R and L are the population means of theright (R) and left (L) sides, and N isthe
number of individuals. Intheory, theterm 2 covar(R;L;) removesall of the positive covariation

§ It also accounts for why the repeatability of FA can be as low as 20% even when the
coefficient of variation of DI among individuals is 100% (Houle 2000 J Ev Biol 13:720).
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between R; and L; due to genotype and environment, leaving only the uncorrelated random variation
of Rj and L; dueto DI.

This statistical trick yields a biologically meaningful descriptor of DI only so long asall of
the interdependencies between R and L due to genotype and environment are both positive and
captured by theterm 2 covar(RL). Unfortunately for studies of FA, if the covariation between sides
isnegative, or if the variance of R or L depends on trait size, then var(R - L) becomes a complex
mixture of the effects of genotype, environment and DI, and cannot be interpreted asasmple
measure of DI.

Equation 1 yields some useful insightsinto why certain idiosyncrasies of FA analyses are
so important: @) antisymmetry is effectively negative covariation between the sides (Van Vaen,
1962), therefore subtle antisymmetry will inflate var(R - L), b) if amorphogen that influences trait
growth islimiting, such that an excess on one side yields a deficit on the other (Klingenberg and
Nijhout, 1998), this may also yield a negative covariation (normal covariant asymmetry, Palmer et
al., 1993) that would inflate var(R - L), and c) if the range of body sizesin asampleislarge, and
var(R;) and var(L;) increase with the trait means, then var(R; - L;) no longer estimates asingle DI
variance but rather awhole family of DI variances that depend on the trait's size distribution
(Section IV.A3).

Tests for antisymmetry (Section V.B3) and size dependence (Section IV.A4) are therefore
essential elements of a FA analysis.

I1.E) LOG TRANSFORMATION YIELDS SIMPLE, SCALE-FREE ANALYSES
Where ME isrelatively small (Section V.Al), log-transformation of raw measurements
offersaversatile and attractive solution to many elements of FA anayses.

1) A conventional result viaan unconventiona route |R-L|/[(R+L) /2] @In(R/L)|=|In(R) -
In(L)| (Section IV.A7). In other words, the difference between the natural logs is effectively
equivaent to the difference between the sides divided by the mean. Both describe FA asa
proportion of the trait mean, and therefore yield dimensionless (scale free) indexes that alow
the FA variation of very different sized traits to be compared directly (Section IV.A7).

2) Avoiding undesirable size-dependent heterogeneity Where FA increases with trait size, and
where considerable size variation exists within a sample, the frequency distribution of (R - L)
will be leptokurtic because it represents amixture of individuals with different variances
(Wright, 1968; Section V.B2b). This potentialy confounds tests for FA relativeto ME
(Section V.A) and for departures from normality (Section V.B2). The frequency distribution
of In(R) - In(L), however, is not influenced by simple size-dependence, so any remaining
leptokurtosis must be due to other factors, such as outliers (Sections 1V.Ale), the insidious
effects of ME (Sections IV.A6), true heterogeneity in underlying DI (Section V.B2b), etc.
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3) Improved power for measures of DI in anindividua Deviation from symmetry in asingle trait
inanindividua estimates the underlying DI variance with not much confidence (Section 11.C).
L og-transformed measurements allow deviations from symmetry to be averaged for multiple
traitsin an individual, thereby increasing the ability to detect DI differences among individuals
(Sections 1V.B3, VI.B). Statistical evidence for DI heterogeneity within asample is an essential
prerequisite to tests for correlations between FA and individua quality, fitness, attractiveness,
etc. With no evidence for DI heterogeneity, such tests are pointless.

4) Testing for differences anong groups using multiple traits per individual When comparing
samples of individuals, each trait provides an independent estimate of DI. Unfortunately,
because FA is often proportiond to trait Size and traits typically differ in size, a simple pooling
of traits may yield misleading results. However, In(R) - In(L) is not influenced by smple size-
dependence. When combined with amulti-way Levene'stest (Section VI.A), multiple traits may
be combined in asingle analysisto test for differences among groups of interest aswell as
interactions between groups (Section VI).

11 CHOICE OF TRAITS

Severa fundamenta concerns should govern the choice of traitsfor aFA analysis.

I11.A) BEWARE DEPARTURES FROM IDEAL FA

As noted ritually in discussions of FA variation, subtle departures from bilateral symmetry
generally take three forms, each defined by a unique combination of mean and variance of right-left
(R-L) differencesin asample: fluctuating asymmetry (mean = 0, normal), directional
asymmetry (DA; mean® 0, normal), and antisymmetry (mean = O, platykurtic or bimodal).
Differences between the sides of individualsin traits that exhibit either DA or antisymmetry likely
arise from a complex mixture of genetic and non-genetic causes (see Pamer and Strobeck, 1992,
for adetailed graphica explanation). Therefore, traits exhibiting DA or antisymmetry may not yield
reliable measures of DI (Palmer and Strobeck, 1992, 1996; but see Graham et al., 1993, 1998, for a
minority opinion).

111.B) BEWARE PHENOTYPIC PLASTICITY

Distinguishing departures from symmetry due to DI from those due to predictable
environmental effectsis most troublesome for traits known to exhibit phenotypic plasticity. Three
examplesillustrate the problem.

First, many plants exhibit pronounced phenotypic plasticity (Bradshaw, 1965).
Significantly, measures of variability often differ among regions of single plants, as observed in
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tobacco (Paxman, 1956; Sakai and Shimamoto, 1965), Clarkia (Sherry and Lord, 1996), iris
(Taragev, 1995), and trees (Bagchi et al., 1989). In addition, intraplant variability may vary over
timeinindividua plants (Roy, 1958), directions of deviation from symmetry in leaves may be
related to phyllotaxis (Dormer and Hucker, 1957), and directional departures from symmetry in
plants may be induced experimentally (Solangaarachchi and Harper, 1989; Deshiez et al., 1991).
Similarly, infoliose lichenslocal micro-climates may induce departures from radial symmetry in
individua thalli (Armstrong and Smith, 1992). These observations suggest deviations from
symmetry, or from some organ-specific invariant (Freeman et al., 1993), arise due acomplex
mixture of direct — presumably repeatable — effects of the environment, along with the random
effectsof DI. Therefore, departures from symmetry or other invariants (Freeman et al., 1993) in
plants seem like unreliable measures of DI.

Second, vertebrate bones grow by accretionary growth and are capable of significant
remodelling (reviewed in Olsen et al., 2000). In human limb bones, differential use may increase
asymmetry (Malina, 1983; Trinkaus, 1994). In addition, the right and left legs of humans exhibit
compensatory growth during ontogeny so that deviations from symmetry in an individual vary over
time (Hermanussen et al., 1989). Asaconsequence, deviations from symmetry in vertebrate bones
may be difficult to use as an index of DI.

Third, many animals exhibit use-induced differencesin structures used for food handling or
processing (Travis, 1994). Where paired structures exist for manipulating prey, differential use of
one side may induce morphological asymmetries. For example, in ashell-crushing crab, a harder
diet induces relatively larger claws (Smith and Palmer, 1994). In the same species, serid
observations revealed that individual crabs forced to crush prey developed a more pronounced
preference to crush with one claw (either R or L) than those fed soft food (Palmer and Harrison,
unpublished). Such alearned handedness may induce morphological differences between the
sides. Therefore, in paired structures where one side may be used more than the other, departures
from symmetry may arise due to both differential use and DI.

For these reasons, traits known to be very plastic should be avoided: environmentally-
induced asymmetries (Nijhout and Davidowitz, this volume) tell us nothing about DI.

I11.C) BEWARE TRAITS VULNERABLE TO WEAR

Traits vulnerable to breakage or wear complicate interpretations of FA variation. First, even
if both sideswear at the same rate on average, the amount of wear will rarely be identical.
Differencesin wear between sides will likely be normally distributed about a mean of zero, and
therefore indistinguishable from variation dueto DI (Section V.Ala). Second, deviations from
symmetry due to breakage or wear can create an artificial dependence of |R - L| on trait size, since
loss of material from one side increases the asymmetry but decreases average trait size (Sullivan et
al., 1993). Most importantly, departures from symmetry due to differential wear tell us nothing
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about DI .

[11.D) PREFERRED TRAITS
Reliabletraits for studies of FA should share several qualities.

[11.D1) High repeatability They should be easily and repeatably measured (metrical) or scored
(meristic; but see Palmer, 1994, for an extensive discussion of idiosyncrasies of meristic traits).
Considerable analytical angst may be avoided if severa traits are examined for FA relative to
ME at the start of a study, and only those where mean |R - L| exceeds mean [M; - M| by at
least twofold areused. Similarly, time invested early in astudy to reduce ME by refining the
measurement protocol will be more than repaid by increased statistical power and confidencein
the final results.

[11.D2) Low plasticity They should not exhibit significant plasticity or remodelling (see Section
[11.B). They should not be traits where one side may be used more often than the other, or
where one side might experience different micro-environmental conditions.

[11.D3) Low vulnerability to wear They should not be vulnerable to wear or injury (see Section
111.C).

[11.D4) Geometric independence Where multiple traits are examined per individua, they should be
both geometrically and developmentally independent. Linear measurements that share a
common endpoint, for example, are not geometrically independent: variation in the position of
the shared endpoint will affect both dimensions. Similarly, different dimensions of the same
structure (e.g., length and width of asingle leg segment, or wing vein-lengths on the same wing)
may not yield independent estimates of DI because perturbations early in development affect the
entire structure or because they are more highly integrated devel opmentally (Leamy, 1993;
Klingenberg and Zaklan, 2000; Klingenberg 'integration’ this volume).

[11.D5) No or predictable size-dependence The difference between sides should either be
completely independent of the mean, asin some meristic traits (Berry, 1968; Angus and Schultz,
1983; but see Palmer, 1994, for exceptions), or it should increase in proportion to trait size due
to simple allometry so that transformations removing trait size effects are valid (see Section
IV.A7).

(---- Tablelapproximately here - - - - )
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V) DESCRIPTORS OF FA

IV.A) UNIVARIATE MEASURES OF FA
1V.A1) Standardized conventional FA indexes

Our earlier summary of FA indexes (Pamer and Strobeck, 1986; Pamer, 1994) alowed
relations among indexes to be seen more clearly. It suffered from one unfortunate disadvantage:
numerical valuesfor the different indexes were not directly comparable because some were mean
differences (FA1 - FA3), some were variances of untransformed differences (FA4 - FA7, FA10),
and some were log-transformed differences (FA8). Theindexesin each row of Table 1 hereyield
descriptors of FA that are directly comparable numerically (see Sections 1V.A2 and IV.A3 for
justification). Unfortunately, FA3 isequivalent to FA2 (and FA6a equivalent to FA7a) only when
FA isproportiona to trait size; if FA isindependent of trait size FA3 underestimates FA2 by an
amount related to the size variation (see Appendix 1V). For trait size CV < 20%, FA3 deviates from
FA2 by less than 5%, but for atrait size CV of 40%, FA3 deviates from FA2 by nearly 20%.

The pros and cons of these indexes are discussed at length in Palmer (1994). FA1 and FA2
are the most popular indexes by far, which is fortunate, because they are less affected by departures
from normality (skew or leptokurtosis) than are FA4ato FA6a. Theindexesinrows2 and 3, dong
with index FA10b, are dimensionless and express FA as a proportion of trait size. Thisalows FA
to be compared directly among traits of very different overal size.

Although rather more cumbersome to compute, FA 10a and FA10b have one major
advantage over al other FA indexes. they describe the average difference between sides after ME
has been factored out. Because of the biases ME introduces (Section V.Al), one or both of them
are worth computing to confirm that differencesin FA among groups persist after ME has been
partitioned out, even if other indexes are used for more sophisticated tests of differences among
individuals or samples (Section VI).

Unfortunately, antisymmetry will artificially inflate al of these indexes and DA will inflate
those based on unsigned deviations (FA1-3, FA8a) (Pamer, 1994). So testsfor platykurtosis
(Section V.B3) and DA (Section V.B1) must precede any tests for differencesin FA among
individuals or groups.

(- - - - Figurelapproximately here - - - - )

1V.A2) Why an average deviation estimates a variance and an asymmetrical distribution of |R-L|is
not to be feared
For traitsthat exhibit ideal FA, R - L differences exhibit anormal distribution about a mean
of zero, and the standard deviation SDg_| describes the spread of R - L differences about that mean
(Fig. 1a). indexes FA4a, FAS5a, FA6aand FA7aall estimate SD(r. ) directly.
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Taking the absolute value of (R - L) differences amountsto flipping the |eft side of the
distribution over onto theright (Fig. 1b), so now twice as many observations exist to the right of
zero but none exist to the left. This has two very important and useful consequences. Firgt, the
truncated normal distribution (Fig. 1b) is strongly asymmetrical (skewed to the right), so its mean
and variance areinextricably linked. In fact, for atruly normal distribution, the CVig . | = SDr -
/' meang _| | isaconstant: O((p - 2) / 2) = 0.756 (Houle, 1997). If DI variesamong individuals,
though, the resulting distribution of R - L isno longer normal (Section V.B2b), and this constant
no longer applies. Second, the expected value (i.e., mean) of thisdistribution (Fig. 1b) differsfrom
the expected standard deviation of the signed asymmetry distribution (Fig. 1) by a smple constant,
0.798 = (2/p) (Kendall and Stuart, 1951). Therefore, the mean|R - L| provides an unbiased
estimate of SD(R-L), although it is somewhat less efficient statistically (87.6%, Kendall and Stuart,
1951; Palmer and Strobeck, 1992).

Because the expected value of mean|R - L| = O2/p) SDg.| = 0.798 SDr_ (Fig. 1), indexes
based on variances (FA4, FA5, FA6, FA7, and FA10 of Palmer, 1994) may be easily modified to
make them directly comparable to indexes based on average difference (FAL, FA2, FA3). The
modified indexes of Table 1 show the appropriate modification.

Many biologists new to FA analyses are troubled by the highly skewed distribution of |R -
L|. Some even try transformations to correct for this skew because they have been so rigidly
trained to correct for departures from normality before conducting any statistical tests. But thisfear
isunwarranted. The skew of the |R - L| distribution is precisely why thisindex hasits useful
properties! Over forty years ago, Levene (1960) recognized that the difference between the means
of two truncated normal distributions (e.g., Fig. 1b) provided arobust and unbiased estimate of the
difference between the variances of the untransformed normal distributions (Fig. 1a). Thisisthe
basis of Levene'stest for heterogeneity of variance, which is perhaps the most straightforward and
versatile test available for FA variation (Sections 11.B and VI.A).

IV.A3) Trait Size variation: the problem

Generalizations about patterns of FA variation have been seriously hampered by the impact
of trait size variation (Palmer and Strobeck, 1986). During normal growth, the variability of atrait
tendsto increase with trait size (Lande, 1977; Van Vaen, 1978): the long bones of an elephant's
hind legs are more variable in absolute terms than the homologous bones of amouse. Thereal
guestion, of course, iswhether one is proportionally more variable than the other. Severa
corrections for the size-dependence of variability have been proposed (Palmer and Strobeck, 1986;
Leung, 1998), including some rather peculiar ones (Evans and Hatchwell, 1993). Oneindex — trait
difference divided by trait mean [|R-L}/((R+L)/2)] — iswidely used in many studies of FA
variation, but it has been criticized because of the apparent lack of independence of the numerator
and denominator (see Evans and Hatchwell, 1993, and the exchange between Sullivan et al ., 1993,
and Cuthill et al., 1993). Furthermore, thiswidely used index does not lend itself easily to tests for
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the significance of FA variation relative to ME because the average of the replicate measurements
must be computed first. Clearly, amethod that avoided these shortcomings would be preferred,
particularly if it were easier to use.

Dependencies of subtle asymmetries on trait size complicate the analysis and interpretation
of FA differencesin severa commonly encountered situations:

a) Inferred differencesin DI among populations. FA variation offers a valuable tool for
estimating the effects of genetic or environmental stress on different populations, and therefore
has many promising applications in biomonitoring and conservation (Parsons, 1992; Clarke,
1995; but see Heard et al., 1999, for acritica commentary). However, for many organisms
overal body size, or the relative size of particular traits, aso differ among populations due to
genetic or environmenta effects on growth and form (Futuyma, 1986). If FA varies with trait
size, and average trait size differs among populations, then inferred differencesin DI among
populations may be either enhanced or obscured by size-dependent variability (Palmer and
Strobeck, 1986).

b) Inferred differencesin DI among taxa or traits. Comparative (e.g., Gummer and Brigham,
1995; Brakefield and Breuker, 1996; Crespi and Vanderkist, 1997; Bromberg and Jaros, 1998)
or historica studies (e.g., see Smith, 1998) of FA variation can yield significant insightsinto the
evolution of DI. Many other questions remain to be addressed: Are some categories of taxa
(e.g., homeotherms vs poikilotherms, arthropods vs vertebrates) or some categories of traits
(e.g., locomotory vsfeeding vs reproductive, endoskel etons vs exoskel etons) more
developmentally predictable than others? Unfortunately, estimates of DI based on FA are
greatly complicated by differencesin overal trait sSize or dimensionality.

¢) Estimating organism-wide DI based on multiple traits. Deviationsfrom symmetry inasingle
trait provide at best aweak estimate of the underlying DI variance (Section 11.C). But
averaging asymmetries of multiple traits (Section VI.B) should increase the ability to detect
differencesin DI among individual s because each trait provides an independent estimate of the
underlying DI (Palmer, 1994). However, acomposite measure of organism-wide DI based on
asymmetries of multiple traits must take into account the potentially confounding effects of
differencesin trait size.

d) Within-sample heterogeneity in FA and leptokurtosis. If FA varieswith trait Size, and trait size
varies within asample, then the average FA for the sample will reflect a mixture of underlying
DI and size-dependent asymmetry variation (e.g., see Rowe et al., 1997). This hasthe same
effect as combining groups of individuals with different variances: both yield leptokurtosisin
the pooled sample (Wright, 1968; Palmer and Strobeck, 1992). Therefore, interpreting within-



Rev. 5/13/01 Palmer & Strobeck -19-

population leptokurtosis as direct evidence for within-sample variation in DI (e.g., Gangestad
and Thornhill, 1999) seemsrisky at best, smply because |eptokurtosis may arise in so many
different ways (Section V.B2b).

€) Correlations between trait or body size and individual quality. In addition to the statistical
complications noted above, body size or trait size differences may reflect real differencesin
individual quality. Arbitrary statistical 'removal’ of trait size effects may therefore potentially
obscure biologicaly significant differencesin FA among individuals or groups (Padmer and
Strobeck, 1986; Leung, 1998). Clearly, elimination of al size-dependent FA variationisnot a
desirable outcome, since some may reflect true size-dependence of DI, so correction for 'size
effects should be based on biologically sound, a priori models of growth.

IV.A4) Testsfor size-dependence

Tests for size-dependence of FA may be done several ways. Recall that |R - L| estimates
the SD of (R - L) with one degree of freedom (Section 11.C). Therefore atest of the association
between trait asymmetry |R - L| and trait size [(R+L)/2] is effectively aLevene'stest for
heterogeneity of variance that tests for association between two continuous variables for each
individual — one estimating the variance, the other estimating the mean — rather than the
conventional test between two or more groups where only variance estimates are used.

Tests for size-dependence are best conducted beforetesting for ideal FA (Section V.B)
because size-dependent heterogeneity in asymmetry variation can yield leptokurtosis in the
frequency distributions of R - L or obscure subtle antisymmetry (Section 1V.A3).

A parametric, least-squares linear regression of trait asymmetry |R - L| vstrait size
[(R+L)/2] isone potential test, but this test assumes homogeneity of variance (the variancein Y
should be independent of the value for X). Clearly if the average |R - L| differs between traits of
different size, so will the variance because the mean and variance of absolute deviations are
inextricably intertwined (Section IV.A2). Fortunately, heterogeneity of variances generaly
decreases the power of aregression analysis, so the result of thistest is conservative. However,
parametric tests of association may be strongly influenced by one or two extreme observations, and
so are more likely to yield a spurious positive result if data are unusually distributed.

Non-parametric tests of association (Spearman and Kendall coefficients of rank correlation)
are preferred for this analysis because they do not assume homogeneity of variance and are not
influenced by afew extreme observations. These two tests differ in how they weight pairs of ranks.
Spearman’sr is preferred where the reliability of closely ranked valuesis uncertain (Sokal and
Rohlf 1995, p. 600), and is therefore somewhat more appropriate to FA data because of the
uncertainty of FA estimates. Both yield similar vaues, though, for real FA data (see Step 8,

Appendix V).
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IV.A5) Correcting for trait Size variation: the standard solutions

The growth of most body parts arises from a simple multiplicative process: replication of
cells. Asaconsequence, trait variability (as measured by its standard deviation) increasesin
proportion to the mean (i.e., the coefficient of variation, CV, isindependent of the mean). Thisis
why log transformations so nicely linearize relations between dimensions of almost any two traits
(Huxley, 1924; Huxley, 1932) and standardize the variances (L ewontin, 1966).

Severa FA indexes correct for trait size effects by expressing deviations from symmetry as
aproportion of trait size (Table1). Attheleve of individuas, dividing the difference |R - L| or (R-
L) by the mean= (R + L)/2 isthe most common transformation (FA2 and FAGaof Table 1). This
transformation yields a convenient dimensionlessindex of FA, and therefore allows differencesin
proportional FA to be compared directly among traits of very different sizes. A similar
transformation may aso be applied at the level of the entire sample (FA3 and FA7aof Table 1).

Asjustified el sawhere (Palmer and Strobeck, 1986; Palmer, 1994; Leung, 1998), however,
this transformation should not be applied blindly. Depending on the pattern of size-dependence,
other transformations may be more appropriate (Leung, 1998). In addition, where FA isfixed but
trait size varies considerably, a correction for size-dependence can generate spurious differencesin
FA (Section IV.A6). Fortunately, most morphological traits do exhibit smple multiplicative
growth, so these standard transformations seem appropriate in most cases.

( - - - - Figure2 approximately here - - - - )

IV.A6) Correcting for trait Size variation: afundamental concern

Measurement error (ME) seriously complicates tests for differencesin FA among traits of
different size. For normal studies of morphological variation, variation dueto ME isasmall
percentage (1 to 5%) of the true biological variation, therefore the increase in biologica variation
relative to the mean is not serioudy affected by ME. Unfortunately, in FA studies, ME (e.g., as
MEL1 of Table 3) may be a sizeable fraction (25 to 100%) of the true average difference between
sides, FA1=mean |R - L|. Sowhilethetrue biological variation may increase in proportion to the
mean (Fig. 2a), ME tends to be constant and independent of the mean, both for the same trait of
individuals of different sizes and among traits where the same protocol was used on each trait. Asa
consequence, larger individuals or larger traits will appear to exhibit proportionally lower FA than
smaller ones ssimply because ME isasmaller proportion of the between-sides variation (compare
Fig. 2b to Fig. 2c)!

Care must therefore be taken when testing for the size-dependence of FA, where larger size
isthought to reflect higher quaity (reviewed in Maller and Swaddle, 1997). If unscaed FA (eg.,
FA1) declineswith increasing trait size, this can only occur if DI issmaller in larger individuals,

since ME istypically constant. Therefore larger individuals will exhibit lower FA.
However, if asize-scaled index (e.g., FA2) declines with increasing trait size, an additional
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test isrequired to determine whether this decline is greater than expected given a constant ME. Two
approaches seem reasonable. First, ask: is SLOPEg, — the slope of proportional FA (e.g, FA2))
vstrait size (R; + L)/2 — significantly steeper than SLOPE,;g — the slope of proportional ME
(e.g., mean(MEL) / [(R; + Lj)/2] vstrait size (R; + L)/2? Because SLOPE), g has negligible error
(relative ME declines roughly linearly with increasing trait size if the size range is less than twofold,
Fig. 2c), the statistical test is asimple one-samplet-test: t= (SLOPEgp - SLOPE\E) / SEga,
where SEg, isthe observed standard error of SLOPEER, . tgisthen compared to critical values of
the Student's t distribution for N-1 degrees of freedom. If the size rangeisrelatively small (less
than two-fold), and two measurements have been taken per side, the expected SLOPEyg =-ME1/
S?, where MEl isasin Table 3 and trait size S= mean[(R + L)/2] (see Appendix | for derivation).

Alternatively, divide the size range into three or more size categories. For each size
category, compute FA10a (Table 1), which factors ME out. Then, ask: doestheratio FA10a/
SIZE. decline significantly with increasing SIZE., where SIZE. = mean [(R, + L;)/2] for each size
category. Any declineintheratio FA10a/ SIZE. must be due to atrue declinein proportional FA.

Such tests should be conducted whenever ME (as MEL, see Table 3) exceeds 10% of the
best estimate of the true average difference between sides (e.g., FA10a, Table 1).

( - - - - Figure3 approximately here - - - - )

IV.A7) Correcting for trait Size variation: anew and versatile solution based on In(R/L)

If ME (assMEL, Table 3) issmall (e.g., <10% of FA1, Table 1), so that concerns about the
bias ME introduces to size-adjusted estimates of FA are minimal (Section [V.A6), then an
aternative approach to quantifying size-adjusted of FA based on FA8 (Palmer, 1994) offers severa
advantages.

FAS8 scalesout size variation by taking theratio R/L. Thisratio may have been the very first
index of FA variation ever used (Sumner and Huestis, 1921), well before the phenomenon of FA
was given aname (Ludwig, 1932). Where DA and antisymmetry are absent, variation in thisratio
reflects the proportional variation about the expected mean of 1.0 (Sumner and Huestis, 1921).
Fear of ratios (e.g., Atchley et al., 1976), however, seems to have discouraged use of thisindex.

Indeed, variation in the ratio (R/L) does have one unfortunate property (Fig. 3). Evenif R,
and L; are normally distributed, the frequency distribution of R; /L; is skewed (Fig. 3a). This skew
becomes more pronounced the greater the difference |R - L| asa proportion of the mean, (R+L)/2

(Fig. 2c). Fortunately, the frequency distribution of log(R; /L;) is no longer skewed, no matter how
large FA isrdativeto trait size (Figs. 3b, ¢). Therefore FA8 of Pamer (1994), and its more useful
descendent FA8a (Table 1), are perfectly reasonable descriptors of FA.

Because both FA2 and FA8a (Table 1) estimate the size-scaled, between-sides variance, one
might ask how these two indexes arerelated. Surprisingly, for all practical purposes, they are
numerically equivalent, if loge = In (natural or Napierian logarithms) is used instead of [0g
(Briggsian logarithms), because
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IN(R/L)] @R - L|/[(R+L)/2] (3)

More precisaly, lettingd; = (R- L) / [(R + L)/2], dy issimply thefirst term of an expansion series
(see Appendix | for proof):

IN(RIL)|= |dy + d{3/ 12 +d{5/ 80 + ...|

Significantly the second and all subsequent termsin this series can be ignored in studies of FA
because d; isamost wayslessthan 0.1 and typically closer to 0.01 (Palmer, 1996). So even if
deviations from symmetry approach 10% of trait size (i.e., d; = 0.1), the second term in this series
would be lessthan 0.001, and al higher order terms would be even smaller. Therefore, FA2 and
FA8a(Table 1) are equivalent to at least three decimal places.

Furthermore, atrick from first-year calculus reveals amost useful relationship:
IN(R/L) = In(R) - In(L), so [In(R/L)]| = In(R) - In(L)| 4

Best of all, this equivalence means that numerical values of |In(R/L)| actualy describe FA asa
proportion of the trait mean, so no back-transformation is needed to obtain biological meaning. A
smple loge transformation of al measurements opens up awhole spectrum of versatile yet
straightforward tests, because standard FA analyses applied to In-transformed data are analyses of
size-independent or scale-free FA variation.

- Testsfor FA relative to ME will be less sengitive to within-sample FA heterogeneity dueto
size dependence (Section [V.A3d).

- Testsfor departures from ideal FA (Section V.B) will not be confounded by FA heterogeneity
due to size dependence.

- Deviations from symmetry in multiple traits of an individual can be combined to yield amore
reliable estimate of individual, organism-wide DI (Section 1V.B3).

- Multiple traits may be incorporated into asingle analysis, thereby increasing the power of tests
for FA differences among individuals or groups (Section V1) without concerns about
unwanted effects of size-dependence (Section 1V.A3).

Finally, since In(X) = 2.303 log;(X), the same analyses may be done with either natural or
base 10 logarithms. The only advantage to natural logsis that they yield numerical estimates of FA
that are directly comparable to FA2 (Eg. 3). Of course, the confounding effects of ME apply to
FA8ajust asthey do to all size-standardized indexes (Section IV.A6).
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IV.B) MULTIVARIATE MEASURES OF INDIVIDUAL FA

IV.B1) Why combine information from multiple traits?

If an organism-wide level of DI exists, then each trait should provide some information
about it. Unfortunately, the deviation from symmetry in asingle trait estimates the underlying DI
variance of that individua with limited confidence (Section I1.C). However, if each trait provides an
independent estimate of the underlying DI variance, then combining information from multiple traits
should increase confidence in estimates of individual DI (Leary and Allendorf, 1989; Palmer, 1994;
Leung et al., 2000). Effectively, each additiona trait adds one additional degree of freedom to the
estimate.

(- - - - Table2approximately here - - - - )

1V.B2) Combining information from multiple traits- prior methods

Pooling information from multiple traits must be done with care for two reasons. First, if
FA isnot significantly larger than ME for some traits, differences among individuals may be
obscured by pooling traits. Therefore, it iswiseto exclude traits where FA is not significantly
larger than ME before computing these composite indexes. Second, where FA is measured as a
proportion of trait size, these multivariate indexes are biased by differencesin ME in the same way
asindividual traits (Section IV.A): larger individuals or traits will appear proportionaly less
variable because ME makes up a smaller proportion of the between-sides variation (Fig. 2c).

Many multivariate indexes have now been advanced (Table 2). Unfortunately, some are
vulnerable to size-dependent differencesin FA (FA1l, FA13), some are only meaningfully applied
to meristic traits (FA 12), and some simply lack much statistical power (FA16). Nonetheless, others
show rea promise as general multivariate indexes of individua DI.

Leung et al. (2000) suggest two intriguing new indexes (Table 2). One (FA14) divides each
valueof |R - L|for atrait of agivenindividual by the mean |R - L| of that trait for the entire sample.
The second (FA15) is a purely nonparametric index based on rank orderingsof [R-L|. |R-L|is
ranked from high to low independently for each trait in a sample, and the composite measure of
individual asymmetry is the sum of these ranksfor al traits of an individual.

Both indexes avoid the problems that arise when average FA differs considerably among
traits, either due to size-dependence or some other factor, because both express the asymmetry in a
singletrait of an individua relative to the asymmetry in that trait for the entire sample. But both
suffer from two limitations. First, multiple computational steps are required to compute each index,
so they are more cumbersome to apply. Second, both yield numerical descriptors of average FA
that are not directly comparable among studies. So, although FA14 and FA15 may not be useful
descriptors of organism-wide DI, they do offer interesting alternative tests for differencesin
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organism-wide DI among samples because they are independent of both trait Size and average trait
FA. Therefore, both seem useful astests of statistical significance.

[V.B3) Combining information from multiple traits- average proportional FA

The simple transformation In(R) - In(L) removes scale effects by expressing the difference
between sides as a proportion of trait size (Section 1V.A6). Thisnot only removes within-sample
heterogeneity due to size variation that can lead to leptokurtosis of (R - L) for individual traits
(Section 1V.A3d), but it allows a composite measure of FA for anindividua to be computed smply
asthe average of the proportiona deviations from symmetry of multiple traits (FA17, Table 2). In
addition to being easier to compute, FA17 expresses the FA of an individual in numerical values
that are directly comparable to those obtained for singletraits (FA2 and FA8a, Table 1).

Finally, atraits x individuals ANOVA on |In(R) - In(L)| allows a more powerful test for
heterogeneity of DI among individuals (Section VI.B), since it pools the information from multiple
traits to get a better estimate of the DI of each individual.

|V.B4) Landmark methods

Therevolution that is sweeping morphometrics (Rohlf, 1993) offers some intriguing new
ways to examine the DI of both size and shape variation of complex structures (Auffray et al.,
1996; Smith et al., 1997; Arngvist and Martensson, 1998; Klingenberg et al., 1998; Klingenberg
and Mclntyre, 1998; Auffray et al., 1999). This revolution focuses on landmarks —
developmentally homologous points in either 2D or 3D space (Bookstein, 1992) — rather than
conventional measures of distance used in traditional morphometric studies.

For amultivariate method, the procedure is not terribly complex. In anutshell, the analysis
involves four steps (see Klingenberg and Mclntyre, 1998, for a nice graphical illustration):

a) Record landmark data. Digitized XY coordinates of multiple landmarks of a single structure
(e.g., jaw bone, insect wing) are replicated at |east twice independently for each side.

b) Align landmark sets. All the constellations of landmarks for both replicates of both sides are
aligned relative to each other as closely as possible using a least-squares Procrustes fitting
procedure (Rohlf and Slice, 1990), after all the left-side landmarks have been reflected. The
landmark constellations are first centered on their respective centroids, scaled to acommon
centroid size (average deviation of landmarks from the centroid), and then rotated about the
centroids so as to minimize the squared deviations of al landmarks from their respective
means.

Thistransformation yields Procrustes coordinates, where all trait size variation has been
removed and only shape variation remains. The distribution of observed landmarks about the
mean of each landmark for the entire sasmple istypically bivariate normal, so the deviation of
an aigned right-side landmark from the homologous landmark on the left side of an
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individual specimen (XYjr - XY ) isconceptually thesameas (R; - L;)/[(R; + L;)/2]. Each
landmark therefore contains information about DI.

c) Test for differencesin FA relativeto ME. Asinany FA analysis, the X and Y coordinates of
all the Procrustes coordinates now contain information about ME (the difference in locations
between replicate sets of landmarks) and asymmetry (true difference in location between
landmarks of the right and left sides), and the significance of asymmetry relative to ME may
be tested using amodification of the standard sides x individuals ANOVA procedure (Palmer
and Strobeck, 1986). Aswith conventional descriptors of asymmetry, the frequency
distribution of (XY g - XY; ) for each landmark, aswell asthe total shape difference between
sides[a (XYr - XYL )/ k, where k= the number of landmarks] must be tested for
antisymmetry (platykurtosis, Section V.B3).

d) Test for differencesin FA among individuals or among groups. The average right-left
difference of al the aligned landmarks yields a single, multivariate estimate of the deviation
from symmetry in an individua (FA18, Table 2), and these can then be analyzed using any of
the standard tests for FA differences among individuals or groups (Section V1).

Landmark analyses offer two significant advantages over conventional distance analyses.
Firgt, trait Size FA, overdl trait shape FA, and the FA of individual landmarks, may all be compared
among individuals or groups. This allows a much more detailed exploration of the effects of the
local vsglobal effects of DI on a structure (Klingenberg and Mclntyre, 1998). Second, FA is
estimated from multiple traits (landmarks), so it has the potential to give amore robust index of
individual DI.

But landmark analyses also have some shortcomings. First, they are limited to single,
relatively rigid, elements (e.g., vertebrate bones, arthropod limb segments or wings, fish body
outlines). Second, if FA isnot greater than ME for al landmarks, then real FA differences at afew
landmarks may be swamped out by the noise of ME at others. Third, the Procrustes alignment
procedure necessarily makes variation in any one landmark dependent on the variation of all others.
In other words, one highly variable landmark will induce apparent variation in the remainder viathe
least-squares fitting algorithm. Finally, corrections for allometry are not possible, so size-
dependent changes in shape, or variability, may confound the interpretation of FA variation.

Landmark analyses seem like a promising new approach to FA variation, but their full
potential (and limitations) have yet to be explored.

V) ANALYSES OF FA: VALIDATING THE DATA

V.A) MEASUREMENT ERROR AND REPEATABILITY
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Although better than no predictor at al, deviation from symmetry is still apoor predictor of
underlying DI of an individual because of two sources of error: measurement error (ME) and
sampling error. First, deviations from symmetry are so small that they are typicaly similar in
magnitude to ME (Palmer, 1996). Therefore, ME often contributes a high percentage of the total
between-sides variation (Fields et al., 1995; Van Dongen and Lens, 2000), and reduces the
correlation between observed FA and inferred underlying DI. Second, the deviation from symmetry
of asingletrait in an individual — even if it were measured without error — only estimates the
underlying DI of that individual with one degree of freedom (Section I1.C).

To have confidence that differencesin R - L among individuals are not simply an artifact of
ME, the significance of FA relativeto ME must be tested. To have confidence that differencesin R
- L among individuals reflect real differencesin underlying DI, and not just sampling error, requires
an estimate of the hypothetical repeatability (Van Dongen, 1998).

V.A1) Measurement error- the problem

Boring as it may be, attention to ME is perhaps more important than any other aspect of a
FA study (Greene, 1984; Palmer and Strobeck, 1986; Swaddle et al., 1994; Fields et al., 1995;
Merildand Bjorklund, 1995). If thissmple fact were better appreciated, many misleading
conclusionsin the FA literature or failed studies of FA variation (see review by Smmonset al.,
1999) might have been avoided.

The clam by some FA enthusiasts that M E cannot generate interesting patterns reflects a
remarkable ignorance of elementary statistics. Unlike conventional analyses, where ME simply
reduces the signal relative to the noise, ME poses serious problems for FA analyses.

a) Misinterpreting ME as DI. Deviations from symmetry due to ME are indistinguishable from
those due to DI (Palmer and Strobeck, 1986; Palmer, 1994), because they are random,
independent, and normally distributed about a mean of zero. Therefore, just asfor random
deviations from symmetry induced by other causes (Section I1.A), normally distributed
deviations about a mean of zero, by themselves, are not unambiguous evidence of DI.

b) ME and FA are often comparable. Deviations from symmetry are often so small that they are
similar in sizeto typical errorsin measurement (Greene, 1984; Palmer, 1996), therefore
measurements must be taken exceedingly carefully to have any hope of detecting rea
differencesin FA among samples.

¢) ME artificially inflates FA. Increasing ME actually increases FA for al indexes of FA variation
except those that factor out ME (e.g., FA10a, FA10b, Table 1). Therefore differencesin ME,
for example among different samples of the same trait measured on different days, can yield
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differencesin FA that are entirely artificial (see Fig. 7 of Pamer, 1994). More serioudy, ME is
likely to differ consistently among traits for avariety of reasons. Therefore artificia differences
in FA among traits could arise entirely dueto differencesin ME.

d) ME can not be partitioned out of individual FA for asingletrait. Although average ME may be
partitioned out of the between-sides variation for a sample viaANOVA (Section V.A5), it can
not be partitioned out of deviations from symmetry in asingletrait in an individual .

€) ME outliers create leptokurtosis. Outlier measurements, due to causes other than ME such as
recording errors, transcription errors, data entry errors, calibration errors, sorting errors, etc., are
acommon cause of leptokurtosisin frequency distributions (see Steps 1 & 2, and Table V.6, of
Appendix V). Therefore, leptokurtosis may not be asreliable an indicator of within-sample
heterogeneity of DI as some would like (Gangestad and Thornhill, 1999).

f) High ME can create artificial Size-dependent FA. If ME (as MEL, see Table 3) is comparable to
FA (asFA1, Table 1), and if considerable variation in trait Size existswithin asample, FA asa
proportion of trait Size (e.g., FA2, Table 1) will decline with increasing trait size (Section 1V.A6;
Fig. 2). Also, for traits with the same ME, smaller traits will appear to exhibit lower FA asa
proportion of trait size (e.g., FA2) than larger traits.

( - - - - Figure4 approximately here - - - - )

0) ME obscures FA variation. Finaly, asit doesin any conventiona analysis, ME potentially
obscures differences in underlying DI. Even in the absence of ME, statistical support for
paralel variation in |R - L| between pairs of traits on the same individuals may be low (Fig. 4),
simply because |R - L| estimates the underlying DI variance with only one degree of freedom
(Section 11.C). For example, even with high DI (16-fold range) and with no ME, asymmetries
in onetrait will only show acorrélation of < 0.3 with asymmetries of other traits on the same
individuals. Introducing ME reduces these correlations even further (Fig. 4).

( - - - - Table3approximately here - - - - )

V.A2) Measurement error- description

Discussions of ME can be quite confusing if underlying error variances such as s2g
(the variance of repeat measurements on asingle side, Table 3a) are not distinguished from
numerica descriptorsof ME, like MEL (Table 3b). Therefore when ME isreferred to in generd,
it should mean s2),g. However, when referring to a specific descriptor of ME some convention is
required to indicate which oneis being used (e.g., Table 3).

Measurement error may be quantified in several ways, some of which are more informative
than others (Table 3). Some descriptors (ME1, ME2) report ME in the original units of
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measurement. Because they describe the actual ME for atrait, at |east one of these should be
reported for each trait in every FA analysis (see Appendix V). One descriptor (ME3) ssmply
expresses the average difference between replicate measurements as a percent of average difference
between sides. Others (ME4, MES5) don't describe ME directly, but rather express FA variation asa
proportion of the total between sides variation, which includes ME. ME4 and MES are smply
different ways of measuring repeatability, and are often reported in FA studies because they provide
a standardized measure that is easy to understand. The larger the repeatability, the smaller the ME
relativeto FA.

Some might be puzzled by the equations for ME4 and MES (Table 3), both of which yield
repestabilities (r;) but appear to differ from the more familiar equation (Lessels and Boag, 1987; r,
is sometimes referred to as the "intraclass correlation coefficient”, thought it doesn't mean

correlation in the sense that the term is used now, Sokal and Rohlf, 1995, p. 214):

2

= ——— (5)
S+ So

where sf isthe best estimate of the true underlying variance in some variable x and sé isthe
error variance (note that the denominator | sf + sg ] isactudly the observed variation, which
includes both the underlying and error variation). The equations differ, though, only because ME4
and MES refer to MS from ANOV A, which may include one or more variance components,
whereas EQ. 5 refers to the actua underlying variances. ME4 and MES yield the same number as

Eq. 5 because the expected value for MSgividuas O M Sinteraction 1S sg +n sf and that for

MSgror IS sg (Palmer and Strobeck, 1986; Sokal and Rohlf, 1995, p. 214). Substituting thesein
the equations for ME4 or ME5S yields

(s +ns)- sg ns7 ¢
r|= = =

2 2 2 2 2 2 2
e thnsy )+(n-1) sg ns; +nsg S + Sg

(s

ME4 and ME5 are smpler because they may be computed easily using the MS from ANOVA. No
fiddling is needed to estimate the variance components of Eq. 5. Furthermore, this approach avoids
the confusion that arises commonly when MS from ANOV A, which are indeed variances, are
mistaken for the individual variance components that contribute to them (Lessels and Boag, 1987).

V.A3) Perilsof repeatability
Many studies of FA variation express ME as arepeatability coefficient (ME4, ME5, Table
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3). These coefficients are appealing because they express the variation among traits as a proportion
of thetotal variation (including ME). So, for example, arepeatability of 0.9 or 90% implies that
90% of the total observed variation among a set of replicate measurements is due to underlying
variation in the trait being measured and 10% isdueto error. In studies of FA, it iscritical to
remember that the 'trait’ whose repeatability should be measured is deviation from symmetry (R -
L), nottrait size (R or L). Evenif the repeatability of trait Size measurementsisvery high, the
repeatability of FA may be extremely low, simply because FA istypically such asmall percentage
of trait size (Fields et al., 1995).

Measures of %M E (ME3) or repeatability (ME4, MES), however, al suffer from the same
limitation. On the one hand, as dimensionless numbers, they are convenient and easy to interpret.
On the other hand, true ME can not be obtained from them with confidence because differencesin
repeatability or reliability can increase due either to adecrease in ME or to anincreasein FA (Table
3d). More serioudly, vauesfor repeatability may be greatly inflated, or %ME gresatly decreased, if
an investigator specifically chooses individuals with the widest possible range of asymmetry
variation to estimate ME. In other words, if the subsample of individuals on which repeatability is
estimated exhibits awider range of FA than other samplesin the study, then the repeatability will be
artificially inflated. Finally, to obtain an actual measure of ME (with units) requires substituting
some estimate of FA into the above equations. Fortunately, this problem does not arise where
repeat measurements have been taken on al individualsin astudy, and where ME3, ME4, or ME5
are computed using all the data.

As aconsequence, whenever statistical measures of repeatability are used to describe the
size of FA rdativeto ME, the ME should also be given, either as ME1 or ME2. Either will beinthe
units of original measurement, and the two are easily interconverted (Table 3).

V.A4) Hypothetical repestability (R) and among-individua variation in DI

Two issues arise when testing for associations between individual FA and a particular
phenomenon of interest, or when estimating the heritability of FA. First, grounds must exist for
believing that DI truly variesamong individuals. Second, correlations with FA will underestimate
correlations with DI.

a) Testsfor DI heterogeneity. Thetota observed FA variation withinasample, Vg | = var(R-L) =
FA4 (Pamer and Strobeck, 1986), arises from at |east three sources (modified dightly from the
notation of Whitlock, 1998):

i) Vp, = true variation in the DI among individuals within a sample (Vy, is therefore the
variance of aset of DI variances).

i) Vg = variation due to the intrinsic uncertainty of deviations from symmetry as predictors of
the true DI variance in agiven individual (i.e., observed values of (R - L) will still vary
considerably even among individuals of identical DI; Section [1.C), and
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i) Ve = variation dueto ME.

In asample where DI truly varies among individuals, the total asymmetry variation among
individuas Vr_ issome function of V), Vg, ad Ve Therefore, before estimating the
heritability of DI — effectively a correlation between parents and offspring — or testing for
correlations between individua DI and other phenomena of interest, the following must be true:
VR.L >Var+ Vme If Vg isnot significantly greater than expected for agiven Vg, + V e then
no justification exists for testing for correlations with individual DI (i.e., Vp, is negligible).

The smplest statistical test for DI heterogeneity within asingle sampleisatest for
leptokurtosis of asingle trait (Section V.B3). If Vp, contributes significantly to var(R-L), then the
frequency distribution of (R-L) must be leptokurtic (Wright, 1968), because it represents a mixture
of individuas each with different DI (e.g., see Fig. 1 of Van Dongen, 1998). Alternatively, where
multiple traits have been measured, atraits x individuals ANOV A provides a more powerful test for
DI heterogeneity among individuals (Section VI.B).

b) Correctionsfor bias. Evenif DI varies significantly among individuals, correlations with
individual |R-L| will consistently underestimate correlations with DI, because of uncertainty
introduced by Ve and Vg, (Whitlock, 1996). The hypothetical repeatability (Van Dongen, 1998)
attempts to correct for such abias.

Equations for hypothetical repeatability (R, Table 3) have been derived by Whitlock (1996,
1998), Bjorklund and Meril&a (1997) and Van Dongen (1998). Just asit doesfor a conventiona
repeatability (e.g., EQ. 5), R attempts to estimate the true variation in DI among individualsas a
proportion of the total observed FA variationinasample: R=Vp,/ Vi, . Inaddition, R may be
used to adjust heritabilities, or correlations with |R - L|, to better reflect correlations with underlying
DI (Whitlock, 1996).

When the results of several published studies were examined more closely, |R - L| of one
trait correlated more strongly with |R - L| of asecond trait as R increased (Van Dongen and Lens,
2000), reinforcing the belief that differencesin DI among individuals are expressed organism-wide
and that pooling information from severa traits should provide a better estimate of underlying
individua DI (see aso Lensand van Dongen, 1999, and Section V1.B below). However, ina
similar analysis of published heritability estimates, heritability of FA did not increase with
increasing R, suggesting that reports of significant heritability of FA may be spurious (Van
Dongen and Lens, 2000).

c¢) Problemswith hypothetical repeatability. The concept of hypothetical repeatability isan
important one for studies of FA variation among individuals. If R could be estimated reliably it
would be avaluable tool for determining when correlations with |R - L| should be expected, and for
adjusting those correlations to provide a better estimate of correlations with underlying DI
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(Whitlock, 1996). We therefore applaud the attempts to derive a quantitative descriptor (Whitlock,
1996; Bjorklund and Merilg, 1997; Van Dongen, 1998; Whitlock, 1998).

Unfortunately, existing derivations of R al appear flawed in one way or another.
Bjorklund and Merila (1997) point out that the CV .. | =SDr. |/ meanr. | isaconstant. But this
isonly trueif DI isinvariant. The more DI varies among individuas within a sample, the more
leptokurtic the distribution of (R-L) becomes (Section V.A4a), and the greater SD|R-L | becomes
relative to the mean|R-L|. The suggestion that many observed CV g | | are much greater than
expected dueto large ME (Bjorklund and Meril&, 1997) is simply not correct. Leptokurtosisis
likely responsible since the value for CV g_ | depends on the leptokurtosis of (R-L), not on ME.

The derivations of Whitlock (1996; 1998) and Van Dongen (1998) appear to make a
different mistake. Both derive R by summing variances among individuals of different underlying
DI. But variances are additive only if the mean isthe same, not if the means differ. The expected
mean of (R-L) is zero, and therefore constant, so summing var(R-L) isentirely appropriate.
However, the expected mean of |R-L| clearly depends on the variance (see Fig. 1). Therefore, for
two samples of different variance, var|R-L|pooieq * Var|R-L|y + var|R-L|,. Theimpact of this error
on derivations of R is unclear.

In addition, the numerical valuefor R is till an estimateof the true R of asample, soitis
subject to uncertainty. Before too much faithis placed in R astool to correct for sampling error
and ME, it would be helpful to know the standard error of R for avariety of combinations of V),
Var adV e If Rdifferslessthan 2 SE from zero, then its value as a correction is dubious at
best. Vauable as R may be, we still need areliable derivation and a standard error. Conclusions
based upon existing derivations are therefore difficult to judge.

Finally, athough likely obvious to many, a smple observation isworth repeating: the low
correlations reported for many associations with FA may smply reflect truly low correlations, not
an artificial lowering due to ME and sampling error.

V.A5) ANOVA procedure testing the significance of FA relativeto ME

The two-way, mixed model ANOV A procedure (sides= fixed, individuals= random)
advanced by Palmer and Strobeck (1986) to test for the significance of FA relativeto ME is easy to
conduct and easy to interpret (explained in detail in Palmer, 1994). This procedure also:

- tests for the significance of DA
- dlows an estimate of repeatability to be computed (MES5, Table 3), and
- permitsthe only estimates of FA where ME has been factored out (FA10a, FA10b, Table 1),

For these reasons, it remains a valuable tool for studying FA variation using either conventional
(Palmer, 1994; Swaddle et al., 1994; Merila and Bjorklund, 1995; Bjérklund and Meril&, 1997,
Van Dongen, 1999) or multivariate (Klingenberg and Mclntyre, 1998) measures of asymmetry.
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Appendix V illustrates a complete worked example of the procedure.

V.A6) What to do when replicate measures of al individualsis not practical

Sometimes the sheer size of astudy is so large that replicate measurements of all traitsin al
individualsisimpractical. Also, in unusual caseswhere ME issmall (e.g., where MEL of Table 3is
<10% of FA1), replicate measurements of all traitsin al individuals may not be necessary. Under

these circumstances, it is sufficient to take repeat measurements on only a subset of individuals. A
sides-x individuals ANOVA (Section V.A5) on this subset is still necessary to confirm that FA
exceeds ME, asisareport of the level of ME (as MEL or ME2, Section V.A2).

It should be obviousthat if greater careis taken during repeat measurements than during the
rest of the study, the true ME will be underestimated and the conclusions about FA variation (or its
absence) may be meaningless. Therefore, every effort must be made to ensure the measurement
protocol when estimating ME on a subsample includes all the sources of error present in the main
study (day-to-day variation, among-observer variation, wear and tear on specimens, calibration
errorsin digitizing systems, effects of inexperience, etc.). One solution would be to conduct the
first set of replicate measurements of a subsample of specimens at the beginning of the study and
the second set at the end.

V.B) DEPARTURES FROM IDEAL FA

V.B1) Directiona asymmetry
Traitswhere one side is consistently larger than the other in the same direction (DA)

complicate both the analysis and interpretation of FA variation. Analyses are complicated, because
anumber of FA indexes, including FA1, FA2, FA3 and FA8a(Table 1), are artificially inflated by
DA (Palmer, 1994). Interpretation is complicated because even if DA isfactored out statistically
(Graham et al., 1998), the remaining between-sides variation is likely acomplex mix of directional
genetic effects, directional environmental effects (likely viathe effects of growth rate on allometry),
and DI. Therefore, asarule, if traits exhibit significant DA they are best excluded from FA
analyses (Palmer and Strobeck, 1992; Palmer, 1994).

Unfortunately, sometimes even very dight DA may become significant statistically in
studiesinvolving large samples. Under these circumstances, too many data might be lost if these
traits were excluded, and factoring out DA would seem desirable. The critical question hereis. At
what point is DA so small that it is unlikely to confound interpretations of FA variation? Any rule
isarbitrary, but a potentially useful rule of thumb may help. 1f DA, asmean(R - L), isno larger
than FA4a (Table 1), then the predisposition towards one side is |ess than the average deviation about
mean(R - L). Therefore, since the underlying variation in DA would likely be 10 - 20% of the mean
DA — the CV for many traitsis commonly in this range (Lande, 1977) — deviations about the
mean DA would be due largely to DI.
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Oneinsidious way that spurious DA may creep into a FA study is via human handedness.
Because most humans are strongly handed (Perelle and Ehrman, 1994), measurements on the right
side of an organism might be made dightly, but consistently differently from those on the left. This
is apotentialy serious problem where measurements require considerable manual dexterity. Helm
and Albrecht (2000) report a striking example where statistically significant DA arose exclusively
due to the handedness of the observers and suggest ways to avoid this problem.

Testsfor DA are an essentia step in any FA analysis. They ask nothing more than whether
the mean (R-L) differs significantly from zero. Many conventional tests may be applied, including
one-sample t-tests of mean(R - L) vs zero, paired t-test of RvsL, the sidesx individuals ANOVA
procedure (Section V.Ab), aswell as others (Palmer, 1994).

(---- Tabledapproximately here - - - - )

V.B2) Departures from normality- the problem

Many factors may cause the distribution of R - L to depart from normality (Table 4). Some
departures are mere inconveniences that have nothing to do with DI (Table 4, ai, a.ii, b.i, and b.ii,
b.iii). Othersreflect unusua mixtures of different kinds of asymmetry variation (Table 4, a.iii, a.iv,
av, and b.iv) that may or may not be detectable via mixture analysis (Van Dongen et al., 1999).
However, some (Table 4, b.v, b.vi, and c.i) arelikely occurrencesin studies of subtle asymmetries
and have significant implications for analysis and interpretation.

a) Skew. Skew — the third central moment of afrequency distribution (Soka and Rohlf, 1995) —
refersto departures from normality that are asymmetrically distributed about the mean. It ranges
from -¥ (an elongatetail to the left) to +¥ (an elongate tail to the right). For anormal distribution,
skew is zero.

The most common causes of skew are either anomalous data or mixtures of different types
of asymmetry variation (Table 4d). Fortunately, the former are readily fixed via careful inspection
of the data (see Appendix V for an example of detection and correction), and the latter are largely
hypothetical, and therefore not likely a common problem.

b) Kurtosis, general. Kurtosis— the fourth central moment of a frequency distribution (Sokal

and Rohlf, 1995) — refers to departures from normality that are symmetrically distributed about the
mean. Values of kurtosis range from -2 (extreme platykurtosis) to +¥ (extreme leptokurtosis).
Unfortunately, the kurtosis statistic has no ssimple verbal description (Balanda and MacGillivray,
1988). Asa consequence, the history of its interpretation abounds with color and controversy
(Balanda and MacGillivray, 1988; Dodge and Rousson, 1999). Reviewing this history helps reveal
why agiven value of kurtosisis hard to interpret as revealing something specific about the shape of
afregquency distribution.
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Until the dawn of computers, few biologists or statisticians were interested in verbal
interpretations of kurtosis. Originaly the sign of the kurtosis statistic was interpreted to revea a
joint excess (positive- or lepto-kurtosis), or ajoint deficit (negative or platy-kurtosis), in both the
peak and the tails of afrequency distribution (see Finucan, 1964). Later, it wasinterpreted to
indicate merely the direction that the frequencies at the center of a distribution departed from a
normal distribution: positive kurtosis meant an excess and negative kurtosis adeficit. But thiswas
confirmed to be incorrect in four specific examples (Kaplansky, 1945). Ali (1974) then suggested
kurtosis was best interpreted only as the tailednessof adistribution regardless of what was
happening at the peak — positive indicating heavy tails and negative indicating light tails— because
observationsin the tails contribute disproportionately to kurtosis. Darlington (1970, p. 19) argued that
"kurtosisis best described ... asameasure of unimodality versus bimodality", or the tendency
toward bimodality of adistribution: the more negative the kurtosis the more pronounced the
bimodality. But Chissom (1970) showed that purely rectangular ‘unimodal’ distributions yielded
negative kurtos's, and Hildebrand (1971) showed that not al bimodal distributions yielded negative
kurtosis. Double gamma bimodal distributions (where, at each mode, the distribution of
observations may be quite asymmetrical or skewed) could yield kurtosis values that ranged from -2
to 3 (Hildebrand, 1971). Perhaps most serioudly of all, Balanda & MacGillivray (1988, p. 114)
showed how a single value of kurtosisthat is considered mesokurtic (normal) could nonetheless
arise from distributions that were either bimodal (double gamma) or narrow-peaked
(TukeyLambda; their Fig. 2)! Clearly, the kurtosis statistic by itself tells us nothing specific about
distribution shape. Perhaps this should come as no surprise, since a single number is unlikely to
capture reliably the many possible ways a symmetrical distribution might depart from normality.

Moors (1986) advanced perhaps the most useful interpretation of kurtosis. Kurtosis
describes reasonably well the density of observations at two specific locations on a frequency
distribution: one standard deviation above and one standard deviation below the mean (see Fig. 1a).
An excess at these two locations yields negative kurtosis (platykurtosis) whereas deficiencies there
yield positive kurtosis (Ieptokurtosis). Thisview nicely explains how a bimodal distribution can
yield either negative or positive values of kurtosis depending on how close the peaks are to the
mean. A bimodal distribution, where the distribution about each mode isnormal and closeto + 1
SD from the mean, will yield the most extreme negative kurtosis.

Fortunately for studies of FA, most platykurtic distributions of right-left differences appear
to be composed of two peaks each of whichisroughly normal and similar in size (see Fig. 6
below). Under these conditions, each mode will lie very closeto + 1 SD from the mean,
particularly as the bimodality becomes more pronounced (Chissom, 1970). Therefore the kurtosis
statistic should be areasonably sensitive measure of the kind of bimodality likely to be observed in
studies of bilateral variation.

That kurtosis describes the concentration of observations around £ 1 SD from the mean
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may be seen easily in the descriptive formulafor kurtosis (Darlington, 1970; Soka and Rohlf,
1995):

k=[&(X; - X )4/ (N*SD4)] - 3 (6)

where N isthe sample size, X isthe sample mean, X; isthe value of X for individual i, and SD is
the standard deviation of the sample computed using N rather than N-1. For agiven vaue of the
numerator, the larger the SD, the smaller the kurtosis.

The constant three is an arbitrary correction because, if uncorrected, k= 3 for anormal
distribution. This correction term, which ensures k= 0 for anormal distribution, makes the values
for kurtosis paralldl those for skew, which is zero for anormal distribution with no correction.

C) Leptokurtosis. Leptokurtosis can arise from many causes (Table 4b). One or afew extreme
measurement errors, or afew injured or damaged individuals, will increase the length of the tails of
afreguency distribution of (R - L) and yield leptokurtosis (Table 4, b.i, b.ii). Often these can be
detected and eliminated from an analysis by standard outlier tests (see Step 2, Appendix V for an
illustration of detection and correction). Variation in ME can aso yield leptokurtosis (Table 4,
b.iii), but careful records of when or by whom data were recorded can rgject this possibility. These
latter three causes are likely much more common than generally acknowledged because few studies
present datain such away asto check for them. Leptokurtosis due to a mixture of FA and
antisymmetry (Table 4, b.iv) is certainly possible, but largely hypothetical.

The two remaining causes of leptokurtosis, both of which involve within-sample
heterogeneity in FA, are widespread and significant to studies of FA. First, heterogeneity will arise
if |R - L|increases with trait size (Section 1V.A3d) and considerable size variation existswithin a
sample. This heterogeneity doesn't necessarily reflect heterogeneity in underlying DI, it may
simply represent size-dependence of variability. Fortunately, if |R - L| scalesisometrically with trait
size, (R+L)/2, and ME isnot too large (Sections 1 V.A6, 1V.A7), size-adjusted indexes of FA (FA2,
FAGa, FA8a, Table 1) will eliminate this source of heterogeneity.

Second, if two samples of different FA are pooled, the resulting mixture will be leptokurtic:
the more extreme the differencesin FA between the two samples the greater the leptokurtosis
(Palmer and Strobeck, 1992). This occurs any time samples with different variances are pooled
(Wright, 1968). Gangestad & Thornhill (1999) and Van Dongen (1998) generalized this
observation further, showing that a mixture of individuals with many different levels of DI aso
exhibits leptokurtosis. Thistype of heterogeneity — real among-individual variation in DI — is not
only likely in studies of FA, but must exist any time significant correlations are found or anticipated
between individua |R - L| and some phenomenon of interest (Section VI.B), since such
correlations, if not spurious, absolutely depend on the existence of among-individual variation in
DI.

Unfortunately, as should be apparent from Table 4b, significant leptokurtosis by itself is
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not strong evidence for within-sample variation in DI (b.vi) unless other potentia causes (b.i - b.v)
have been rejected. Therefore the claim that widespread leptokurtosisin studies of FA reveals
strong evidence of widespread within-sample heterogeneity in DI (Gangestad and Thornhill, 1999)
seems premature. Once again, just because results are consistent with an interesting biological
explanation does not mean that explanation is the correct one.

d) Platykurtosis. Platykurtosis arises primarily due to antisymmetry (Table 4c).

The current meaning of the term antisymmetry was advanced by Van Valen (1962, p. 126)
as "abimodal distribution of the signed differences between the sides ... or, in less extreme cases, a
tendency toward platykurtosis as compared with anormal distribution of the same variance”. This
definition is more general than Timoféeff-Ressovsky's (1934, p. 79), which referred to an absence,
or virtual absence, of symmetrical individualsin asample.

Curioudly, the etymology of the term "antisymmetry’ seemswidely unappreciated. For traits
that exhibit antisymmetry, the frequency distribution of R - L differences shows adistinct valley
between two, typically equally-sized, peaks that are equidistant from zero (see Fig. 6). Thisvalley
of 'missing’ observationsis centered on zero the same way the peak is centered on zero for
symmetrica traits, hence the 'anti’ in antisymmetry!

Both DA (Section V.B) and antisymmetry reflect an innate predisposition towards
asymmetry (Palmer and Strobeck, 1992). For all practical purposes, the difference between themis
simply the predictability of the direction of that predisposition. For DA that predispositionis
always toward the same side, but for antisymmetry that predisposition is random in direction
(Palmer et al., 1993). Unfortunately, although not all that different in underlying cause, DA is easy
to detect Statistically (Section V.B1) but antisymmetry is not.

V.B4) Testsfor kurtosis

Testsfor significant kurtosis (k) are complicated by three factors. First, different statistical
packages compute kurtosis in different ways. Some (Statview, Systat) compute k using Eg. 6
above. Others (SPSS, Excel) compute an ‘unbiased estimate' of k (Sokal and Rohlf, 1995):

(n+ nays 3(n-1)2
k= - (7
(n-1)(n-2)(n-3)s* (n-2)(n-3)

wherey refersto adeviation from the mean. Therefore care must be taken to ensure the proper
tests are conducted when ng the statistical significance of akurtosis estimate. Fortunately,
the following simple test reveals which formulais being used. For a sample of four points (-1, -1,
+1, +1) k=-2.0 with Eq. 6 and k=-6.0 with Eq. 7.

The relative merits of Eq. 6 compared to Eq. 7 depend entirely on how the kurtosis statistic
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isused. If only adescriptionof kurtosisisrequired, so that it may be tested for statistical
significance, then Eq. 6 is preferred. However, to predict the kurtosis of a population based on the
observed kurtosis of asubsample, Eq. 7 ispreferred. EQ. 6 yields a biased estimate of k for small
sample sizeswhich Eq. 7 avoids (Sokal and Rohlf, 1995). As sample size increases the two forms
converge (Table5).

(- - - - Figure5& Table5 approximately here - - - - )

A second complication is distribution symmetry. The frequency distribution of the kurtosis
statistic, regardless of how it is computed, is highly skewed unless sample sizes are large (>200,
Fig. 5). Therefore the single standard error sometimes suggested for testing the significance of
kurtosis (Sokal and Rohlf, 1995; Zar, 1999), or yielded by some statistics packages, will yield very
mideading conclusions, particularly about the significance of platykurtosis at small sample sizes (N
< 100). Toassst with studies of FA, we tabulate critical values for both platykurtosis and
leptokurtosis over the range of sample sizes normally encountered in studies of FA (Table5).

More extensive critical values for kurtosis based on Eq. 6 may be found in the original sources
(Pearson and Hartley, 1966; D'Agostino, 1986) and for Eq. 7 (Ieptokurtosis only) in Zar (1999,
Table B.23).

( - - - - Figure6 approximately here - - - - )

A third complication is limited statistical power. Unless sample sizes arerather large, the
kurtosis statistic has limited power to detect antisymmetry (Fig. 6), even when the proper critical
valuesare used (Table 5). For N= 10, the power of k — the percent of trials that reached statistical
significance — barely surpassed 60% even when the distance between peaks (2D) was ten times the
SD of (R-L) about each peak. Similarly, for N= 20, the power of k was only 80% (a = 0.05, Fig.
6a) or 60% (a =0.01, Fig. 6b) when the distance between peaks (2D) was five timesthe SD of (R-
L) about each peak. When antisymmetry is weak, such as when the distance between peaksistwice
the SD about each peak, the power is severely limited: sample sizes of 200 only achieve 60% and
about 30% power for a = 0.05 and a = 0.01, respectively. Mixture analysis may provide some
help here (e.g., see Van Dongen et al., 1999), particularly if antisymmetry is assumed to ariseasa
mixture of two normal distributions that are equidistant from zero, but to our knowledge, no power
analysis comparable to that of Fig. 6 has been conducted.

Because leptokurtosis arises from a heterogeneous mixture of DI variances, amore
powerful and direct test for heterogeneity of DI among individualsisatraits x individuas ANOVA
on [In(R) - In(L)| (Section VI.B). Thistest pools the information from multiple traits to get a better
estimate of the actual underlying DI of anindividual. Clearly, in the absence of statistical evidence
for DI heterogeneity among individuals, estimates of the heritability of DI or reports of correlations
between individua DI and fitness, quality, attractiveness or other traits of interest, are not very
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informative (Section VI.B).

V1) ANALYSES OF FA VARIATION: TESTING FOR DIFFERENCES

VI.A) LEVENE'STEST FOR HETEROGENEITY OF VARIANCE

Testsfor differencesin FA at any level, among individuals, traits, or samples, are
fundamentally tests for heterogeneity of variance because FA estimates avariance (Section 11.A).

Levene'stest (Levene, 1960) isawiddy under-appreciated but versatile and easy to use test
for heterogeneity of variance (Van Vaen, 1978; Palmer, 1994). Although not the most powerful
test if distributions are truly normal, more powerful tests are so senditive to departures from
normdality that their useis strongly discouraged (Van Valen, 1978). Levene'stest is, however, the
most powerful test of the two common teststhat are least sensitive to departures from normality
(Palmer and Strobeck, 1992).

Levene'stest works by transforming signed deviations from the mean into absolute
deviations. Thistransformsasymmetrical normal distribution into a highly asymmetrical, truncated
normal distribution that is skewed to theright (Fig. 1). Asaconseguence, the mean of the absolute
deviations estimates the SD of the untransformed normal distribution (Section IV.A2).

A dsignificant advantage to Levene's test, compared to other tests for heterogeneity of
variance, is the ease with which it may be applied in avariety of ANOVA designs (Yezerinac et al .,
1992; Palmer, 1994; Crespi and Vanderkist, 1997), thereby avoiding the knotty problem of multiple
single-factor tests. In addition, by transforming signed deviations to absolute deviations, Levene's
test may therefore ssimultaneously test for differences between samples or traits, and also for
interactions between samples or traits. Furthermore, it is conceptually and computationally
straightforward, and may be conducted with any conventiona statistical package.

Below, weillustrate three applications of Levene'stest to situations commonly encountered
in FA analyses.

(---- Tables6& 7approximately here - - - - )

VI.B) DIFFERENCES AMONG INDIVIDUALS (MULTIPLE TRAITS)

Where asymmetry has been measured for multiple traits, each trait provides an independent
estimate of the underlying DI of an individual (Section 11.C). To take advantage of this, though, the
information from multiple traits must somehow be combined. In addition, differencesin FA due
purely to trait size need to be removed (Sections 1V.A3 -1V.A7).

A two-way ANOVA (traits x individuals) on replicate measurements of |In(R) - In(L)|
achievesthistest nicely (Tables6, 7). Thisisafully model Il ANOVA. Thistest may be expanded
easlly to include as many traits, individuals, and replicate measurements as desired. If neither traits
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nor individuals vary much in size, the same analysis could be conducted with |R - L| instead of
IN(R) - In(L)|. The MSg, hereisameasure of the average within-group variance among replicate
measurements.

Note that thistraits x individuals Levene's test is a more powerful test for differencesin DI
among individual s within a sample than tests for leptokurtosis (Section V.B3) for two reasons.
Firgt, for sample sizestypicaly found in studies of FA, kurtosisis not avery powerful statistic for
detecting departures from normality (Fig. 6). Second, this Levene's test combinesinformation from
multipletraits, thereby yielding a better estimate of the DI of anindividual: each additional trait
adds a degree of freedom (Section I1.C). Thereforeif atraitsx individuals Levene'stest yields no
significant effect due to individuals, no statistical support exists for variation in DI among
individuals. Clearly, with no such statistical support, attempts to estimate the heritability of DI, or
correlations between DI and individua fitness or quality, are pointless.

(---- Tables8& 9approximately here - - - - )

VI.C) DIFFERENCES BETWEEN TWO SAMPLES (MULTIPLE TRAITS)

In the same way that additional traits provide more power when testing for heterogeneity of
DI among individuals (Section VI.B) they aso provide more power to aLevene'stest when testing
for differencesin FA among groups. If traitsdiffer in size, and FA depends on trait size, then, as
before, a size-corrected measure of FA should be used (Sections 1V.A3 -1V.A7).

Tables 8 and 9 illustrate a hypothetical two-way ANOVA testing for differencesin FA
between two groups (e.g., sexes) and among multiple traits. Thisisamixed-model ANOVA
(group= fixed, trait= random). Thistest may aso be expanded easily to include as many traits,
groups, or individuals as desired. If neither groups nor traits differ much in size, the same analysis
could be conducted with |R - L| instead of |In(R) - In(L)|. See Appendix V for some worked
examples. The MSg, hereis the average within-group variation in FA.

(---- Tables10& 11 approximately here - - - - )

VI.D) THREE-WAY AND HIGHER ORDER INTERACTIONS

Levenéstest isaparticularly attractive test for FA variation because it may be generalized to
any ANOVA design imaginable. In this manner, information from different traits, different subsets
of individuas (e.g., different sexes), and different treatments of interest (e.g., stress levels) may be
combined into asingle anaysis.

Tables 10 and 11 illustrate a hypothetical three-way ANOVA. See Step 10 (Appendix V)
for afully worked example using published data. The MSg, here (Table 11) is the average within-
group variation in FA (i.e.,, among-individua variation).
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VII) CONCLUSIONS

Fluctuating asymmetry analyses are neither conceptually difficult nor computationally
complex. However, attention to afew fundamental detailswill greatly improve the qudity of FA
studies. First, choose traits carefully: examine many traitsinitially then choose those most
appropriate for the study of FA. Avoid traits a) that do not exhibit idea FA (i.e., that exhibit
significant DA or antisymmetry; Section 111.A), b) that are vulnerable to plasticity or wear (Section
[11.B), c) where ME is a high percentage of FA (Section V.A), and d) where size-dependence of
FA does not exhibit simple alometry (Section 1V.A3). Second, inspect the data carefully via
scatterplots and frequency distributions to ensure outlier measurements or outlier individuals are
not confounding estimates of FA (Appendix V, Steps 1-5). Third, use multiple traits per individual
wherever possible. These provide improved power for detecting differencesin DI among
individuals (Section VI.B) and among populations (Section VI.C). Fourth, when testing for
correlations between individual FA and some factor of interest, or when estimating the heritability of
FA, confirm that FA varies significantly among individualsfirst (Sections V.A4, VI.B). Fourth, use
asingle multi-way analysis rather than several smpler analysesto avoid the problems that arise
when conducting multiple statistical tests (Section VI.D). Finally, where alternate tests of the same
hypothesis make different assumptions, and where these assumptions are hard to validate, multiple
testsare advised. If different testsyield the same or similar results, then clearly the results are
robust even if assumptions are violated.

Asis so often the case, these rules are very similar to those for any well-conducted study. A
wider adherence to them would significantly improve studies of FA variation.
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Table1l. Conventiona FA indexesfor asample of individuals based on onetrait per individua,
standardized so that numerical values of related indexes are directly comparable (modified from
Table 1 of Palmer, 1994).

Measure of asymmetry for agiven trait of individual i

Trait-sze  Unsigned asymmetry Signed asymmetry Ratio between sides
correction IR;-Li| (Ri-L;) In(Ri/L;)8
none  FAL mean|R-L| FA4a: 0.798 Ovar(R-L)

FASa: 0.798 (J& (R-L)2/N]

by IR-L| (R-L)
individua FA2: m —_— : var FA8a: mean |In(R/L
ea"I (R+L)/2] FA6a: 0.798\/ [(R+L)/2] In(R/L)|

by ~ mean|R-L| 0.798 Ovar (R-L)
sample FA3, —————— ATa:
mean[(R+L)/2] mean[(R+L)/2]

Other indexes for single traits:

FAQ: 1 -r2of correlation between R and L (i.e., % bilateral variation not due to positive covariation);

apotentially miseading index (Angus, 1982; Pamer, 1994).

FAl0a: 0.798 O2s?, wheres?= (MSg - MSy,)/M = the estimated underlying DI variance of a
given side of individual i, and where MSy = sides x individualsinteraction MS, MSy,=
measurement error MS, M= number of replicate measurements per side, from a sides x
individuals ANOV A on untransformed replicate measurements of R and L (see Table 3 of
Palmer & Strobeck, 1986). When the number of replicate measurements per sideistwo, this
smplifiesto: 0.798 QM Sg - MSp,). Describes the magnitude of total non-directional

asymmetry for atrait after ME has been partitioned out. For traits exhibiting ideal FA (Fig. 1a), it

may be compared directly with FA1 to view the declinein FA1 after removing ME.
FA10b: 0.798 O2s2, wheres?; is computed as for FA10a, but the data analysed are log
transformed replicate measurements In(R) and In(L). Describes the magnitude of total non-

directional asymmetry as a proportion of the trait mean for atrait after ME has been partitioned

out. For traitsexhibiting ideal FA (Fig. 1a), it may be compared directly with FA2 to view the
declinein FA2 after removing ME. Only recommended where size variation is small.

T See Section IV.A2 for an explanation of how variances can be transformed into an estimate of
average deviation.
8§ See Section IV.AY for an explanation why FA8a and FA2 are equivalent to three decimal places.
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Table2. Indexesfor individual FA based on multiple traits per individual.

Previousindexes (Pamer, 1994).

FA11: asymmetry inanindividua (A;)= a |R;-L;| for all traits of an individual; theindex for a
sampleisa A; /N where N= number of individualsin the sample.
CONS: only meaningful where mean (A;) is comparable for al traits (Palmer, 1994).

FA12: anon-parametric index; asymmetry in anindividua (A;)= total number of asymmetrical traits
in anindividual, independent of how large the deviation is between sides; the index for asample
isd Aj /N where N= number of individualsin the sample.

CONS: only meaningful for meristic traits (Palmer, 1994).

FA13: Generdized index of overall FA (GFA); amultivariate measure of average deviation from
symmetry for multiple metrical traits (see Leung et al., 2000, for detailed explanation).
CONS: complex and difficult to apply.

New indexes

FA14: asymmetry inindividua i isa [IFA;[/ EH I Ny, where FAjj isthe deviation from
symmetry of trait j inindividual i, and |FA; | isthe average absolute deviation from symmetry of
trait j for the entire sample (index CFA 2 of Leung et al., 2000).

PROS:. removes size-dependent differencesin FA among traits; removes among-trait differences

in underlying DI; more powerful than FA15 where leptokurtosisis minor.

CONS: potentially yields biased valuesif ME is constant but trait size varies (e.g., see Fig. 2¢);
not comparable quantitatively to other studies, so it is more useful asatest of significance
than for describing FA differences; less powerful than FA15 in the presence of moderate
leptokurtosis (Leung et al., 2000);

FA15: anon-parametric index; asymmetry inindividual i isa RFA;;, where RFA;; istherank value
of |R-L|fortrait] of individual i and the |R - L| values are ranked separately for each trait in the
sample (index CFA 3 of Leung et al., 2000).

PROS:. removes size-dependent differencesin FA among traits; removes among-trait differences
in underlying DI; more powerful than FA15 in the presence of moderate leptokurtosis (Leung
et al., 2000).

CONS: potentially yields biased valuesif ME is constant but trait size varies (e.g., see Fig. 2¢);
not comparable quantitatively among studies, so it is more useful for significance testing than
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for describing FA differences; less powerful than FA 14 where leptokurtosisis minor.

FA16: MANOVA on [FA;j| (index CFA 6 of Leung et al., 2000)
PROS: not vulnerable to departures from normality.
CONS: consistently lower power than related multivariate indexes (Leung et al., 2000).

FAL7: &[In(R/Ly)|/ T =& |In(Ry) - In(L;)|/ T, where R; and L are measurements of the R and L
sidefor trait j and T isthe number of traits per individual.
PROS: expresses the average proportional deviation from symmetry of al traits of anindividual
combined; directly comparable with indexes based on single traits (FA2 and FA8a, Table 1).
CONS: yields biased valuesif ME is constant but trait size varies (e.g., see Fig. 2c).

FA18: landmark based index; Q8 (XY, - XY; )2 for i= 1 to k, the total number of landmarks per
specimen, of Procrustes aligned landmarks from structures on the right (XYg) and left (XY;,)
sides of an individual (see Appendix of Klingenberg and Mclintyre, 1998).

PROS & CONS: see Section 1V.B4.
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Table 3. Measurement error (ME) and repeatability in studies of FA.T

a) true underlying error in measurement

o2y g = variance of repeat measurements of asingle side dueto ME. In the absence of DI (i.e,,
var(R - L) isdue solely to ME) var(R - L) = 2s2y;g / n (see Eq. 111.7, Appendix I11).

b) descriptors of ME that include units of measurement

ME1: average difference between pairs of measurements on oneside, ME1=a|Mq - M|/ N.
PROS:. ME1 may be compared directly to FA1 (Table 1) when FA1 is computed using two
measurements per side (i.e.,, MEL = FA1 in the absence of DI; see Eq. 111.8, Appendix 111);
provides an independent estimate of ME2 (ME2 = MEL/ 0.798; see Section 1V.A2).
CONS: limited to pairs of repeat measurements.

ME2: SD of repeated measurements, ME2 = (Ja var(My, Mo, M3, ... M) / N] = OMS,;, where
MS,,, isthe error MS from asides x individuals ANOVA (Palmer, 1994).
PROS: estimates the true underlying ME (s2),g); not limited to two measurements per trait; may
be compared directly to FA1: inthe absence of DI FA1 = (0.798 2/ n)) * ME2 = 0.798
A(2/n) * MS;,)) (see Eq. 111.8, Appendix I11).
CONS: none.

¢) descriptor of ME that is independent of units of measurement

ME3: %ME = 100rME1/ FA1 = 100*M S, / MSjnteraction Where FAl ismeasured asin Table 1.
PROS: easy to compute; easy to interpret.
CONS: cannot estimate true ME without knowledge of FAL or MSiiteraction:

d) repeatability of FA, independent of units of measurement

M Si ndividuals ~ M Serror

MSigividuals ¥ (N - 1) MSgyor

ME4: repesatability, r, =

where M Spgividuals 1S the among- and M Sy IS the within-individual MS, from a one-way

ANOVA (repeat measurements of R-L nested within individuals, Zar, 1999, p. 405).

PROS: adimensionless number that estimates the true FA variation as a proportion of the total
between-sides variation including ME; easy to interpret (ranges from -1 to +1).

CONS: requires another analysisin addition to the standard test of the significance of FA relative
to ME; cannot be used to estimate ME with units (e.g., MEL) without knowing MSqividuals:
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MSinteraction MSm
MSinteraction + (N - 1) MS,
PROS: adimensionless number that estimates the true FA variation as a proportion of the total
between-sides variation including ME; easy to interpret (ranges from -1 to +1); readily

computed from MS obtained in the standard test of significance of FA relativeto ME (Section
V.A5, Pamer and Strobeck, 1986).

CONS: cannot be used to estimate ME with units (e.g., MEL) without knowing MSgividuas:

MES: repestability, rp =

€) repeatability of DI among individuals (‘hypothetical repeatability’ of Van Dongen, 1998)

R: hypothetical repeatability = 1-(Vea + VmE) X (P-2)/P)/Mrap, Where Viea= var(R-L) = FA4,
Vipa= Var|R-L|, and Vi g= (M E2)2=MS,,
PROS:. may potentially be used to correct for the downward bias of correlations with FA1 due to
sampling error and measurement error (Whitlock, 1996).
CONS: derivation potentialy flawed (Section V.A4c); the standard error of R is unknown so its
ability to reved true variation in DI among individualsis unclear.

t M1, My, ... M= repeat measurements on the same side in the same individual, n= number of repeat
measurements, N= total number of objects measured (normally twice the number individuas
since one object is measured on each side), MS= mean squares. MSteraction = Sides X
individuas interaction MS and MS,= the error M S from the standard sides x individuals

ANOVA used to test the significance of FA relative to ME (Section V.A5, Palmer and Strobeck,
1986).
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Table4. Underlying causes of departures from normality in studies of FA.

a) causes of skew

i) one or moreindividuals were damaged on the same side, yielding extreme values of (R-L).

ii) one or moreindividuals exhibit extreme values of (R-L) in the same direction because of
measurement or recording errors.

iii) amixture of individuas where some exhibit ideal FA (Fig. 1a) and others exhibit weak DA.

iv) amixture of individuals where some exhibit DA and others exhibit antisymmetry (Palmer and
Strobeck, 1992).

v) bimodal variation in R - L where the two modes are of different height; likely due to a mixture of
antisymmetry and DA.

b) causes of leptokurtosis

i) outlier measurements or other causes of heterogeneity of ME (Section V.A and Steps 1 and 2,
Appendix V).

ii) outlier values of (R-L) for afew individuals, due to wear, injury or some type of error (Section V.A
and Steps 3-5, Appendix V).

iii) amixture of individuals where some were measured with one level of ME and otherswere
measured with another level of ME (e.g., due to changes in ME with experience, to session-to-
session differencesin ME, or to differencesin ME among measurers).

iv) amixture of individuals where some exhibit ideal FA (Fig. 1a) and others exhibit antisymmetry
(Palmer and Strobeck, 1992).

V) heterogeneity of (R-L) variation within a sample due to size-dependence of (R-L) (Section
1V.A3d).

vi) heterogeneity of (R-L) variation within a sample due to true variation in underlying DI among
individuals (Section IV.A3d).

C) causes of platykurtosis

i) antisymmetry, consistent deviations of (R - L) from zero, but the side that islarger varies at random
(VanVaen, 1962).
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Tableb5. Critical values of the kurtosis test statistic for deviations of frequency distributions from
normality in the direction of platykurtosis (broad-peaked or bimodal) and leptokurtosis (narrow-
peaked and long-tailed). Significant platykurtosis may signal the presence of antisymmetry.

Critical valuesfor Eq. 61 Critical valuesfor Eq. 78
Platykurtosis L eptokurtosis Platykurtosis L eptokurtosis
SampleSize 5%levd 1%levd 5%levd 1%levd 5%levd 1%levd 5%levd 1% leve
7 -1.59 -1.75 0.55 1.23 -1.997 -2.395 3.109 4,710
8 -1.54 -1.69 0.70 1.53 -1.814 -2.132 2.899 4617
9 -1.47 -1.65 0.86 1.82 -1.674 -2.030 2.829 4,639
10 -1.44a -1.61a 0.95a 2.00a -1.575 -1.881 2.624 4.480
12 -1.36 -1.54 1.05 2.20 -1.442 -1.720 2.416 4.248
15 -1.28 -1.45 1.13 2.30 -1.284 -1563 2.152 3.973
20 -1.18b  -1.36b 1.18b 2.38b -1.161 -1.403 1.869 3471
25 -1.09 -1.28 1.15 2.29 -1.052 -1.288 1.735 3.196
30 -1.02 -1.21 1.12 2.20 -0.992 -1.220 1549 2.862
35 -0.97 -1.16 1.09 2.12 -0.936 -1.147 1.440 2.651
40 -0.93 -1.11 1.06 2.04 -0.886 -1.098 1.333 2.512
45 -0.89 -1.07 1.02 1.96 -0.848 -1.049 1.301 2.313
50 -0.85 -1.05 1.00 1.88 -0.817 -1.016 1.217 2.268
60 -0.79 -0.97 0.94 1.75 -0.767 -0.954 1.132 2.005
70 -0.75 -0.93 0.89 1.64 -0.717 -0.901 1.029 1.804
80 -0.71 -0.88 0.85 1.54 -0.682 -0.870 0.983 1.744
90 -0.68 -0.84 0.81 1.46 -0.658 -0.821 0.916 1.611
100 -0.65 -0.82 0.78 1.39 -0.631 -0.803 0.869 1.510
120 -0.61 -0.78 0.75 1.26 -0583 -0.742 0.791 1.386
130 -0.59 -0.74 0.70 1.21
140 -0.57 -0.72 0.67 1.17 -0.554 -0.707 0.748 1.262
150 -0.55 -0.71 0.65 1.13
160 -0.54 -0.68 0.63 1.09 -0521 -0.674 0.692 1.178
180 -0.51 -0.65 0.60 1.03 -0501 -0.640 0.643 1.102
200 -0.49 -0.63 0.57 0.98 -0.478 -0.620 0.617 1.020
250 -0.45 -0.58 0.52 0.87 0.560 0.909
300 -0.41 -0.54 0.47 0.79 0.510 0.819
400 -0.36 -0.48 0.41 0.67 0.439 0.694
500 -0.33 -0.43 0.37 0.60 0.391 0.610

T Critical valuesfor sample sizes <200 for Eg. 6 were obtained from D'Agostino (1986, his Table
9.5), and for sample sizes > 200 were obtained from Pearson and Hartley (1966, Table 34). All
were obtained by subtracting 3 from the original values, to make them comparable to the skew
statistic (see Section V.B2c).

aConfirmed to be within 1% using 50,000 replications.

b Confirmed to be within 1% using 20,000 replications.

8 Critical values obtained by smulation. Kurtosis was computed using Eg. 7 on 30,000
replicates of normal(0,1). For sample sizes > 200 critical values were obtained
from Table B.23 of Zar (1999), which are only valid for leptokurtosis.
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Table 6. The structure of a hypothetical Levene'stest for differencesin FA among individuals and
traits.t

Trat1 Trait 2 Tratk

Indiv. 1 [IN(R7) - In(Ly)| IN(Ry) - In(L4)| etc.

IN(Rp) - In(Ly)| IN(R) - In(Ly)|

IN(Ry) - In(L;)| IN(Ry) - In(L;)|
Indiv. 2 [IN(R7) - In(Ly)| IN(R4) - In(L4)]

IN(R2) - In(Ly)| IN(R2) - In(Ly)|

IN(R;) - In(Ly)| IN(R;) - In(L)|
Indiv. j etc.

t Ry, Ry, and R; are replicate measurements of the right sideand L4, Lo, and L; are replicate
measurements of the left side of asingletrait in an individua . i= total number of replicate
measurements, j= total number of individuals, k= total number of traits.

Table 7. Outcome and interpretation of the hypothetical Levene'stest for differencesin FA among
individuals and traits. Thisisafully model I ANOVA, since both traits and individuals are random
effects. If specific traits are selected a priori to test for different levels of DI, then traits may be
considered afixed effect, but the expected M S and therefore tests of significance change (Sokal and
Rohlf, 1995; p. 333-334).1

Source Observed Expected Denominator Interpretation if significant
of variation MS MS MSfor F test
Individuals MS s2,+ns2t+ns? MSt FAg variesamong individuas
(1, random)
Traits (T, random) MSt s2,+ns2r+ns2; MS|t FA g Variesamong traits
IXT Interaction MSit  s2,+ns2q M Sqr Differ(_ence inFAg among
traits depends on individual
Error (dueto MSer 52,
measurements)

T Expected MS from Sokal (1995). n= number of replicate measurements. s2= measurement
error variance, s2j1= variance component due to interaction, s2y= variance component due to
traits, s 2= variance component dueto individuals, FAy = relative FA = FA as a proportion of
trait size (FA8aof Table 1).
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Table 8. The structure of ahypothetical Levene'stest for differencesin FA among traits and
between two groups (e.g., sex), based on multiple individuals per group.t

Trat1 Trait2 ... Tratk
Male IN(Rym) - In(Lym)| [IN(R1m) - IN(Lym)l etc.
IN(Rom) - In(Lom)| IN(Rom) - In(Lom)|
IN(Ram) - In(Lam)|  IN(Ram) - IN(Lam)|

INRim) - INLim)l— IN(Rim) - IN(Lin)|
Femae IN(Ry¢) - IN(L15)| IN(R1¢) - In(L45)|
IN(Ryf) - In(Lop)| IN(Ryf) - In(L)|
I n(Rsf)_ s In(L3p)| I rI(Re,f)_ ’ In(L3s)|
IN(Rj¢) - In(Lif)l IN(R¢) - In(Lif)l

Tt R,= average of al replicate measurements of the right side for individual 1, L= average of al
replicate measurements of the left side for individual 1, etc. i= total number of individuals, k=
total number of traits.
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Table9. Outcome and interpretation of the hypothetical two-way Levene'stest for differencesin
FA between sexes and among traits. Thisisamixed-model ANOVA, since sex isafixed effect and
traitsisarandom effect. If specific traits are selected a priori to test for different levels of DI, then
traits may be considered a fixed effect, but the expected M S and therefore tests of significance
change (Soka and Rohlf, 1995; p. 333-334).1

Source Observed Expected Denominator  Interpretation if significant

of variation MS MS MSfor F test
Sex (S, fixed) MSg $2,+ ns2gr + S* MSgr FA,q differs between sexes
Traits (T, random) MSt s2, +nas2r MSq FAq Varies among traits
SXT Interaction MSsr  s2,+ns2g MSg; Differencein FA g bawgen

sexes depends on trait

Error (dueto MSgr 2

individuals) ©

T Expected MS from Soka and Rohlf (1995), where s 2= residua variation among individuals,
s247= variance component due to interaction, s2y= variance component due to traits, S*=
variance component due to sex, n= number of individuals per sex, a= number of sexes. See
footnote to Table 7 for remaining terms.
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Table 10. The structure of ahypothetical Levene'stest for differencesin FA among traits, between
two groups (e.g., sex), and between two habitats (e.g., high stress, low stress), based on multiple
individuals per group.t

Trait 1 Trait 2 ... Tratk
High stress Low stress High stress Low stress
Male  [In(Ryy) - In(L1m)| IN(Rqm) - IN(R1m) - In(Lym)|  IN(Ryy) - In(Lyp)|  ete.
IN(Rom) - In(Lom)| In(L1m)| IN(Rom) - In(Lom)| IN(Rom) - In(Lom)
IN(Ram) - In(Lam)| ||In((|32m;|' IN(Ram) - In(Lam)|  [IN(Rarm) - In(Lam)
(Lo e o
IN(Rim) - In(Lim)! ||n(R§m)' INRim) - In(Lim)l  IN(Rim) - IN(Lim)|
In(Lam)l
IN(Rim) - IN(Ligy)|
Femde  [In(Ryy) - In(L )] IN(Ryg) - In(L1g)l ~ IN(Ryg) - IN(L15)| IN(R1¢) - In(L15)|
IN(Ryf) - In(Lof)| IN(Ryf) - In(Lop)l  IN(Ryf) - In(Lyp)| IN(Rf) - In(Lyp)|
||n(R3f):.|n(|—3f)| ||n(R3f):_|n(|—3f)| ||n(R3f):.|n(|—3f)| ||n(R3f)“-_|n(|—3f)|
IN(Rj¢) - In(Ljf)| IN(Rj¢) - In(Ljf)l IN(Rj¢) - In(Ljf)| IN(Rj¢) - In(Ljf)|

t Rym= average of al replicate measurements of theright side for male individua 1, L 1,,= average
of al replicate measurements of the left side for male individual 1, Ry¢= average of al replicate
measurements of the right side for female individua 1, L 14= average of al replicate
measurements of the left sde for femaleindividua 1, etc. i=total number of males; j= totd
number of females, k= total number of traits.
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Table 11. Outcome and interpretation of the hypothetical three-way Levene'stest for differencesin
FA between sexes (male, female), between habitats (high stress, low stress), and among traits. This
isamixed model ANOVA, since sex and habitat are fixed effects and traitsis arandom effect. If
specific traits are expected to show different levels of DI, then traits may be considered a fixed
effect also, but see Sokal & Rohlf (1995; p. 376-377) for expected M S and proper tests.t

Source Observed Expected Denominator Interpretation if significant
of variation MS MS MSfor F test
Sex (S, fixed) MSg s2,+ nb s2gr + S* MSgr FA,q differs between sexes
Habitat (H, flxaj) MSH 52e+ na SZHT + H* MSHT FAre| differs between habitats
Traits (T, random) MSt s2,+nab s2; MSq FAq Varies among traits
SxH Interaction MSs  s2,+ns2g7 + MSgT FA,g difference between sexes
SH* depends on habitat
SXT Interaction MSsr  s2,+nbs2gr MSq FAq difference between sexes
depends on trait
HXT Interaction MSut  s2,+nas2yt MSgr FAq difference between habitats
depends on trait
SXHXT MSgit 52+ ns2gyr MSgr One 2-way interaction depends on
Interaction the state off the third factor
Error (dueto MSer 52,
individuals)

1 Expected MS from Sokal and Rohlf (1995), where s2.= residua variation among individuals,
S*, H*, and SH* are the variance components due to Sex and Habitat, and Sex x Habitat
interaction (including their df), s2st, s21, and s2gyT are the variance components of the two-
and three-way interactions, n= number of individuals per sex, a= number of sexes (2), b=
number of traits, and FA g = relative FA = FA asaproportion of trait size (FA8aof Table 1).
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mean= 0 mean= 0.798 SDr-L)
a) signed A b) unsigned A
asymmetry : asymmetry :
a i
C
d ;
s 5 :
4 ! i
-1SD 0 +1SD 0 +SD(R-L)
(Ri - Li) |Ri - Li]

Figure 1. Hypothetical frequency distributions of a) signed (R - L) and b) unsigned |R - L |
departures from symmetry for atrait that exhibitsideal FA (mean zero, normal). SD= standard
deviation.
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Figure 2. Smulated variation illustrating the dependence of asymmetry on trait size, (R + L)/2, for
three cases. @) unscaled asymmetry with ME included (Spearman r = 0.228, P= 0.0013), b) size-
scaled asymmetry, ME not included (Spearman r = -0.078, P=0.27), ¢) size-scaled asymmetry, ME
included (Spearman r = —-0.174, P=0.014). Solid linesindicate |east-square linear regressions. In
this simulation, both the underlying DI variance and the variance due to ME were set to 2% of trait
Sze. Variation for theright sdewassmulatedasR; =S + S; + DIj + ME; or Rj =S + §; + DI,
depending whether or not ME wasincluded (a) or not (b): trait sizevariation (S) = U; * S, where
U; = UniformRandom(-0.5, 0.5) and S = 10; size-dependent developmental instability (Dl;)= 0.02
* §; * dj, where d; = RandomNormal (0,1); constant measurement error (ME;)=0.02* S * g,
where e = RandomNormal (0, 1). Variation for the left side was also simulated this way, but with
independent draws of DI; and ME;. Solid symbolsin (c) indicate the expected |R - L| due solely to
ME if only one measurement was taken per side (ME1' =0.798 s yg v2=0.798 * 0.2 (2 =
0.226; see Appendix I11.afor derivation) divided by trait size, (R; + L;)/2.
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Figure 3. (ab) Frequency distributions of the ratio (R/L) and of log (R/L) obtained from computer
simulations [both right (R) and left (L) were normally distributed random deviates, mean= 10, SD=
2.5, N=500]. (c) Effect of increasing asymmetry variation on the skew of ratios (for each point,
N= 500, both R and L were normally distributed random deviates, mean= 10, SD=0.1, 0.5, 1.0, 2.5;
asymmetry CV refersto 100 (SDg. /trait mean); 10 simulations were conducted for each SD; solid
linesindicate least-sgquares first-order polynomial regressions, small dashed lines indicate 5%
significance levels for skew based on a sample size of N= 500.
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Figure 4. Effect of measurement error (ME) on the strength of the correlation among individuas
in asingle sample between |R-L| in onetrait and |R-L | of a second trait in the sameindividual.
Each population consisted of amixture of individuals exhibiting three different levels of underlying
DI variance: expected var(R- L) = DI = 1/x, 1, x. Two populations were smulated, as were two
different distributions of DI variation: (@) x= 4, proportions of al three DI levelsequal, (O) x= 2,
proportions of all three DI levels equal, (@) x= 4, proportions of DI levels 1:2:1, @) x= 2,
proportions of DI levels1:2:1. The ME variance var(M4 - M) is expressed as a percent of the
median DI variance (i.e., avaue of 100 means the variance of replicate measurements equals the
median DI variance between sides). The smulations were conducted by S. Van Dongen using the
model described in Van Dongen (1998) (figure modified from Palmer 2000).
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Figure 5. Freguency distributions of the kurtosis statistic (computed from Eqg. 6) as a function of
sample size. For each tria kurtosis was computed for a distribution of random normal deviates
(mean= 0, SD=1).
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Figure 6. Power curvesfor the kurtosis statistic as bimodality increases. a) a= 5% significance,
b) a= 1% significance. Kurtosis was computed using Eq. 6. Critical valuesfor kurtosis were
obtained from Table 5. Antisymmetry was simulated by varying the value for D (the distance
between one peak and zero, middle pand of frequency distributions at top). S (the standard
deviation of the variation about each peak, middle panel of frequency distributions at top), was held
constant at 1.0. Frequency distributions at the top illustrate a single sample of N= 500 simulated
observations.
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APPENDIX |
Relations among FA indexes that scale out trait size

Severd indexes express subtle asymmetry as a proportion of trait sizein an individua

(Palmer and Strobeck, 1986):

d;=(R-L)/ (R+L)/2), (1.1)
dp=|dq| = |R-L|/ (R+ L)/ 2). (1.2)

=In(R/L)=In(R) - In (L). (1.3)
dg =|d3| = [In (R/L)|=[In(R) - In (L) (1.4)

d; isused to compute index FAG, d, is used to compute index FA2, d is used to compute index
FAS8, and d4 is used to compute index FA8a (Palmer and Strobeck, 1986, and Table 1).

The relations between d; and d,, and between d3 and dy4, are obvious. Therelations
between d; and d3, and between d, and dg, are not, but these indexes can be shown to be
equivalent, for all practical purposes, viaa Taylor expansion series approximation.

First, consider an approximation to the natural log of one particular ratio:

InE X0 22x+ x + x° + i (1.5)
— = —+—+..... u .
1-x9 & 3 5 a

Thisratio can be shown to be equivalent to Ingé%g asfollows. First,

<) R+L)/6
e R o6 R(/

C1+ R Lo
C(R+ R+L)/ (R+L)
w@R;-mg( // S S/ S/ H1 R+L =In2X0 6
Lo (; L (R+L/ (s: 1- x@ '
R+Lﬂ

gﬁuwygé R+5/ R+Béh

R-L
R+L

where x =
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+X0 L
Second, substituting Ingf for Inf_ and R L for x, in equation (1.5) yields:
2 &
. R-L -
u C -
°R- L, &R FL RL & s
I ? 28 R+ R+ LD + U= - 4 20 . . (1.7)
eR+L 3 a (R+L) 12
d 2
u
Substituting from equation (1.1 and 1.3) yields:
d3:d1+d13/12+ d15/80+... (1.8)

Significantly, for studies of FA variation, the second and all subsequent terms in this series can be
ignored because d; isamost aways less than 0.1 and typically closer to 0.01 (Palmer, 1996). So
even if deviations from symmetry approach 10% of trait size (d4 = 0.1), the second term in this
serieswould be less than 0.0001 and all higher order termswould be even smaller. Therefore, to at

least three decimal places, d; = d3 and d, = dj.
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APPENDIX 11
Expected size-dependence of ME for size-scaled FA indexes

If measurement error (ME) is constant, but trait size varies, size-scaled measures of FA
(eg., FA2, FA3, FA6a, FA7a, FA8a) will yield a negative association between apparent FA and trait
size (Section IV.A6). The expected dope of FA2 vstrait size, due smply to ME where only a
single measurement is taken per side, can be predicted as follows.

Definitions
K = overal mean trait size, to which ME is proportional.

p+x=dzeof atraitin an individual, to which DI is proportional (x refersto the deviation of a
trait in an individua from the population mean.

bu = standard deviation of repeat measurements of one side (b expresses ME as a proportion
of overal mean trait Size, 1)

a(u+x) = standard deviation of one side dueto DI (a expresses DI as a proportion of
individud trait size, u+Xx, therefore FA= SD(R - L) = a(u+ X) V2 for one
measurement per side; see Appendix I1l.afor derivation),

k=0.798 = ((2/ p) = the constant to convert SD(R - L) to mean|R - L| (Kendall and Stuart,

1951).
Derivation
R- L kP& (u +x)2 + 2b2u2 .2
__R- U _ky2al(ux)®H20t e o R w6 01
(R+L)/2 W+ X eu+x2
The derivative of FA2 rdativetox is
.2 L2
dIR-U gk [2g? + 22 O dop?E L O
(R+L)/2 _ eu+xg _ K% eu+xg _
dx dx 122 dx
\/2a2 +2b2€eLo
eut+Xxg
gm0 o2 EE MO
k% 2b2( 2u eu + xg _ eu + xg (- ]_)MZ _
2 2
.. w+ X dx 5 (u+X
\/2a2+2b2§eL° \/2a2+2b2§eL0 (1+)
eu + xg eu + Xg
.2
-2kb2§e—*fr°
cuoxe (11.2)

1-2
ot + 2Pt O
(M+X)\/ a + &r+xo
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Evaluated at x=0 (i.e., at the overall mean trait size ), the expected slope of FA2 versustrait sizeis

|R- L
(R+L)/2| _  -2kb® - 2kbWP (11.3)
dx uv2a?+2b%  WP+2a%u? + 2b22 '

x=0

If DI isabsent (i.e., the difference between sidesis due exclusively to ME) then Eq. 1.3 smplifiesto

IR- L
OI(R+L)/2 _-kf2b2?  -k/2bu - FA1
| TT o T 7 7 (1.4)

x=0

where FAlisdefined asin Table 1. For n measurements per side (see derivation in Appendix 111),

the expected dope of FA2 vstraitsizeatx=01is

q_R- 4
(R+L)/2| _-kJ/@/m)bu_-FAl (11.5)
dx u’ T |

x=0
where FAl isdefined asin Table 1 and the difference between sides is due exclusively to ME.
Eq. 11.4 may also obtained asfollows. The derivative

dex) _

CXn— 1
dx

therefore

d(C/x) _d(CxY) _

o ™ Cx?=-C/¥ (11.6)

where Cisany constant. For studies of FA, C would refer to FA1 when DI variation was absent

(seederivation in Appendix I11) and xto trait size(R+ L) / 2.
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APPENDIX 11
Expected contribution of ME to FA

Measurement error (ME) inflates al descriptors of FA except those that partition out ME
(SectionsIV.AL, V.A). Discussions of ME can be quite confusing if underlying error variances
such as s2y;g below are not distinguished from numerical descriptors of ME, like MEL (Table 3).
Therefore when ME is discussed in generdl, it refersto s2,g. Specific descriptors of ME are

referred to using the convention in Table 3.
Definitions

| = overall mean trait size.
€r, § = deviations of the size of the right and |eft side respectively from the mean trait size u
dueto DI [from anormal distribution (0, s2))]; note that al variation in trait sizein the
derivations below is due solely to DI (i.e., underlying body size variation in absent).
dr1. dr2, d; 1, d; » = deviations of measurements 1 and 2 from the right and left sides (1 + eg,
U+ g, respectively) [from anormal distribution (0, s2y)]-
s2, = variance of trait size on one side among individuals due to DI.
s2y g = variance of replicate measurements of asingle side due to ME.
M 1R, Mor, M1, Mg, etc. = actud first, second, etc. measurements of the right and left sides.
Preliminaries
First, recall the relationships between sums and differences of variances:
var(X +Y) = var(X) + var(Y) + 2 covar(XY) (11.12)
var(X-Y) =var(X) + var(Y) - 2 covar(XY)

Where the covariance is zero and the expected means are identical — as would be expected between
independent replicate measurements or between sidesthat differ only due to DI — the term 2
covar(XY) disappearsyielding:

va(X+Y)=var(X-Y)=va(X) + var(Y) (11.2)
Second, recall that:

var(aX) = a2var(X) and therefore var(X / @) = var(X) / a2 (111.3)
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Derivations
The amount that ME inflates FA may be computed as follows.
a) For one measurement per side:
(Ri-L) =Mir-My
=(Mtertdry)-(Ht+e +d)
=(er-€) + (drg-dL1)
Because the DI variances and the ME variances are the same for the right and left sides:
var(R-L) =(s? +s3) + (s3ue + s%vp)
=252 + 252 (111.4)
In the absence of DI (i.e., s, = 0 so any difference between sidesis due solely to ME), this
smplifiesto:
var(R-L) =2s2yg
SD(R-L) =CPsyE
FAl=mean |R-L|=0.798 2 sy =2sye/ P (111.5)

b) For multiple (n) measurement per side:
(RI-LI) :(M1R+ M2R+ +MnR)/n-(M1L+ M2L+ +Mn|_)/n
=(M+tegtdrgtuter+tdrot ... + U+ eg+dgy/n
-(Mte +tdtpte tdot .. tpte tdy)/n
=(er-@) *(dry tdrpt ... +drptd g +do+ ... +dp)/n

Because the DI variances and the ME variances are the same for the right and left sides:

var(R-L)=(s% +s2) +2 (nsg) / n?
=252 +(2n/n2) s2yE

:2(52|+32ME/n) (|||6)
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In the absence of DI (i.e., s, = 0 so any difference between sidesis due solely to ME), this

smplifiesto:

va(R-L) =2s2yg/n (1.7)
SD(R - L) = GMqul n)
FAl=mean |R-L|=0.798 opg 2/ n)= 25/ ANp) (111.8)

Equation 111.6 has the desirable property that asn -> ¥ var(R - L) -> 2 s2;, the observable FA due

exclusively to DI. Similarly, Equation 111.7 has the desirable property that asn->¥ FA1->0.
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APPENDIX IV
Relation between FA2 and FA3

FA2 and FA3 both describe FA as aproportion of trait size (Table 1). In FA2, trait
asymmetry in each individual is standardized by thetrait size of that individual. 1n FA3, the average
trait asymmetry of the entire sample is standardized by the average trait size of the entire sample.

How different are these indices?

Simulation

Trait Sze and FA variation were smulated as follows:

M = overal mean trait Size (set to a constant of 10).
X;= trait size variation (UniformRandom (-s,s), whereswas 0.1, 0.3, 0.5, 0.7, or 0.9).

eRj» € = variation due to DI [RandomNormal (O, DI), where DI was 0.01, 0.02, 0.05; because

p= 10, thismeans the SD of DI was 1%, 2% or 5% of the overall trait mean).
When DI was independent of trait size, right and left were ssimulated as:
R= M+ X + Hegj and Lj= W+ pix; + pey |
When DI was proportional to trait size, right and left were ssmulated as:
R= 1+ X + Ixjegi and Li= p+ X + e

FA2 and FA3 were computed asin Table 1. The CV of trait size was computed as SD[(R+L;)/2]
/ mean [(R+L;)/2], but note that trait size exhibited auniform distribution. For each trial, N=
10,000.

Results

When DI was proportional to trait size, FA2 and FA3 yielded the same values, regardless of
the sizerange or the level of variation dueto DI (Figure1V.1). However, when DI was constant,
FA3 underestimated FA2. The amount of this underestimate depended on the trait size range, but

not on the level of variation dueto DI. If trait size CV was < 20%, FA3 deviated from FA2 by less



FA3/ FA2
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than 5%. However, for atrait size CV of 40%, FA3 deviated from FA2 by nearly 20%, and this

deviation became more pronounced with increasing trait size CV.

1i &V « % % ¥ »
» * DI psize (DI=0.01)
. * DI usize (DI= 0.02)
0.9 ®© v DI pusize (DI= 0.05)
&
0.8 ¢
8
0.7 e DI Constant (DI= 0.01)
o DI Constant (DI= 0.02)
a DI Constant (DI= 0.05) .0
06 . . . . . . . . .
10 20 30 40 50

CV of trait size

FigurelV.1. Theratio of two size-scaled FA indices (FA3/FA?2) asafunction of trait Size variation
for three levels of DI (SD of DI asaproportion of the overal trait mean). Each point was obtained

from asimulated sample size of 10,000.
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APPENDIX V
Fluctuating-asymmetry analysis. A step-by-step example

This appendix and its associated data files are available as web supplements from:
http://www.oup-usa.org/sc/0195143450
and

http://www.biol ogy.ual berta.ca/palmer.hp/DataFiles.htm.





