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DEDICATION

This contribution is dedicated to F. James Rohlf on the occasion of his 65th birthday.  We

should all emulate his passion for understanding the tools of his trade and for sharing that 

understanding so generously with students, colleagues and friends.

ABSTRACT

In spite of a decade of furious activity and an increasingly bewildering array of analytical

methods, essential requirements for a robust study of fluctuating asymmetry have not changed:

judicious choice of traits, meticulous attention to measurement precision, visual inspection and tests

for dubious data, appropriate tests and corrections for size-dependence, confirmation that subtle

deviations from symmetry both exceed those expected due to measurement error and meet the

criteria for ideal fluctuating asymmetry, and an open mind about alternative hypotheses.  We review

these requirements and try to clarify why they are so essential.

Studies of fluctuating asymmetry face a number of serious challenges:  a) random

phenotypic variation arises for reasons other than developmental instability, b) all descriptors of FA

estimate a variance and variances are estimated with much lower confidence than means (i.e.,

repeatability is lower), c) subtle departures from symmetry are typically so minute they are

exceedingly difficult to measure reliably, d) measurement error and trait size interact in complex and

mischievous ways, and e) tests for departures from normality are uncomfortably weak for small to

modest sample sizes.  We outline the foundations of these challenges and some of the ways they

may be addressed.

Persistent efforts to improve analytical tools nonetheless have yielded some useful

advances:  a) log transformations help remove the size-dependence of subtle asymmetries and the

heterogeneity of variance that can arise from this size-dependence, b) proper critical values for the

kurtosis statistic provide more reliable statistical tests, c) indexes that combine information from

multiple traits yield more reliable estimates of individual developmental instability, and d) a

generalization of Levene's test improves both the ease and the power of analyses testing for

differences in fluctuating asymmetry among individuals, traits or groups.

Finally, as an appendix, we provide a detailed worked example, with commentary, of a

complete FA analysis.  It outlines how care and common sense in preliminary analyses greatly

improve the rigor of the final results.  This appendix, and the data files for the analyses, are available

as web supplements.
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ABBREVIATIONS

ANOVA:  analysis of variance

DA:  directional asymmetry

df:  degrees of freedom

DI:  developmental instability

FA:  fluctuating asymmetry, average unsigned deviation from symmetry.

FA1, FA4, FA10, etc.:  various fluctuating asymmetry indexes as numbered in Palmer (1994); see

also Tables 1, 2.

M1, M2, M3, etc.:  a series of replicate measurements of a given trait on a given individual

ME:  measurement error

ME1, ME2, ME3, etc.:  various measurement error indexes as numbered in Table 3.

MS:  mean squares

MSSI:  between-sides mean squares from a sides by individuals ANOVA

SD:  standard deviation

R - L:  right minus left

Xi:  observation X on individual i

X :  mean of a sample of individual observations (Xi)
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I) INTRODUCTION

Fluctuating asymmetries are small, random deviations from symmetry of bilaterally

symmetrical traits (Ludwig, 1932).  They presumably reflect the residual variation after all the direct

effects of genotype and environment on trait form have been removed (Mather, 1953).  As a

consequence, the average unsigned deviation from symmetry, to which the term fluctuating

asymmetry (FA) typically refers, has achieved prominence as a measure of developmental precision

(Palmer, 1996):  the ability of a given genotype to produce the same target phenotype (Nijhout and

Davidowitz, this volume) repeatedly — on opposite sides of the body — under well-defined

environmental conditions (Zakharov, 1992).  Both environmental and genetic stress appear to

increase FA (Leung and Forbes, 1996; Palmer, 1996; Vøllestad et al., 1999;  but see critique by

Bjorksten et al., 2000).  In addition, the subtle deviations from symmetry that yield FA may also

relate to individual quality or fitness (Møller, 1997; Brown and Brown, 1998; and Houle, 1998; but

see comments by Clarke, 1998).  For these reasons, FA has been widely studied in many ecological

and evolutionary contexts (Møller and Swaddle, 1997), although hints of discomfort about the

validity of published claims have arisen on several fronts (Houle, 1998; Palmer, 1999; Simmons et

al., 1999; Palmer, 2000; Palmer and Hammond, 2000).

Over the last decade, the literature on FA has exploded (Palmer, 2000).  In addition to a

flood of data papers (Møller and Swaddle, 1997), many new analytical methods have been

advanced, along with several critiques of methodological issues.  Will refined analytical methods

improve the quality of FA data and analysis?  In some situations they may.  However, more

sophisticated analyses will never compensate for poor data or sloppy thinking.  Below we try to

bring some common sense to bear on problems typically encountered in FA analyses.

I.A) DISQUIETING REVELATIONS

Two recent reports suggest some areas of the FA literature may have been compromised by

a large number of 'false positive' results.  First, as more studies tested whether FA exceeded

measurement error (ME), fewer and fewer detected significant associations between individual FA

and sexual selection (Simmons et al., 1999).  This suggests a) many earlier studies may have

reported false positive results, and b) minimizing ME remains a significant challenge for FA

studies, not only because it weakens results but also because it actually introduces bias in several

insidious ways (Section V.A).  Second, a meta-analysis of published associations between FA and

sexual selection revealed direct evidence of selective reporting (Palmer, 1999):  the tendency to

publish preferentially results that are either significant statistically or consistent with expectation

(Palmer, 2000).  In addition, some of the more remarkable published reports of correlations with

individual asymmetry in humans — such as with IQ, attractiveness, sexual satisfaction, physical

prowess, individual fecundity, and the timing of ovulation — have invited pointed criticism (Palmer

and Hammond, 2000, see also http://www.biology.ualberta.ca/palmer.hp/asym/FA/FA-Refs.htm).
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While the reputation of FA has been tarnished by these critiques, it is too early to dismiss it

as a useful tool for inferring developmental instability.  Other meta-analyses have revealed little or

no evidence of selective reporting among studies of other relations, either between FA and stress

(Leung and Forbes, 1997 as re-analyzed in Palmer, 2000) or between FA and heterozygosity

(Vøllestad et al., 1999), even though they did reveal low mean effect sizes and high variability.

Formal replications of prior FA studies would go a long way toward returning respectability to the

field (Palmer, 2000).

I.B) SOME ESSENTIAL TERMINOLOGY

The terminology associated with subtle asymmetries is a challenge for both newcomers and

veterans.  Appropriate use of terms for patterns, which are observable, and terms for presumed

processes, which are inferred, is critical to avoid perpetuating sloppy thinking.  Our use of the terms

we use frequently is outlined below.  A more complete set of definitions is available in Palmer

(1994), Nijhout and Davidowitz (this volume), and the glossary to this book.

1)  Terms for (observable) patterns

fluctuating asymmetry (FA)-  a pattern of variation of the difference between the right and left

sides (R - L) where the variation is normally distributed about a mean of zero.

antisymmetry-  a pattern of variation of (R - L) where the variation is distributed about a mean

of zero, but the frequency distribution departs from normality in the direction of

platykurtosis or bimodality.

directional asymmetry (DA)-  a pattern of variation of (R - L) where the variation is normally

distributed about a mean that is significantly different from zero.

developmental precision-  a general, neutral term for describing how closely a structure

approaches its ideal or target phenotype (Nijhout and Davidowitz, this volume) for a

particular genotype and growth environment.  It implies nothing about causation and is not

restricted to bilateral traits.  Size-independent (dimensionless) measures of FA (Section

IV.A) offer one measure of developmental precision.  The coefficient of variation among

serially homologous parts of an individual (e.g., legs of an individual millipede), or among

genetically identical individuals reared under identical conditions, would be another.  It is

also dimensionless.

2)  Terms for (inferred) processes or causes

developmental noise-  random variation in a suite of developmental factors that are the ultimate

cause of subtle deviations from symmetry, including metabolic rates, concentrations of

regulatory molecules, diffusion, thermal noise, and rates of cell division, cell growth and cell

death (see also Nijhout and Davidowitz, this volume).  Increased developmental noise yields
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lower developmental precision and increased FA.

developmental stability-  the capacity of an individual to correct for random perturbations

caused by developmental noise.  Increased developmental stability yields higher

developmental precision and decreased FA.

developmental instability (DI)-  the combined contributions of developmental noise and

developmental stability that define the expected or hypothetical variance of R-L.  This term

is equivalent to the asymmetry potential of M.E. Soule (pers. comm.).  Increased DI yields

lower developmental precision and increased FA, but DI may increase due either to

increases in developmental noise or to decreases in developmental stability.  This usage

differs from Palmer (1994) but avoids unintended implications that observed differences in

FA are due to differences in developmental noise versus developmental stability when

nothing is known about the actual causes.

I.C) ANXIETY ABOUT METHODS

A proliferation of methods sometimes suggests a discipline in turmoil.  Where the

biological signal is weak, but the questions alluring, hope springs eternal that increasingly

sophisticated analytical tricks will somehow extract more reliable results from recalcitrant data.

Unfortunately, a surfeit of methods may also discourage new studies or leave those unfamiliar with

the detailed pros and cons confused about how best to proceed.

We would be the last to diminish the importance of methodology to studies of FA.

Nonetheless, we believe firmly that the greatest increase in quality of results will come not from

increasingly sophisticated analyses, but rather from a greater awareness that the little things count.

Careful attention to choice of traits (Section III), measurement protocol and analysis of ME

(Section V.A), detection of outliers (Appendix V), and tests for departures from normality (Section

V.B), coupled with the use of multiple independent simple tests to confirm that results are not

analysis-dependent, will yield more convincing results than recourse to sophisticated methods after

the data have been collected, with the hope that oversights in design and protocol can somehow be

ameliorated.

Below, we summarize recent methodological and conceptual refinements, in the hopes of

providing a sounder foundation to FA analyses and interpretation.  This chapter supplements, rather

than replaces, an earlier FA analysis primer (Palmer, 1994).  We hope the worked example provided

in Appendix V will reinforce appreciation of how simple graphical inspections of the data, and a few

elementary tests, are all that are required for a well-conducted study.
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II) FIVE CORE CONCEPTS

II.A) RANDOM VARIATION  DEVELOPMENTAL INSTABILITY

FA refers to random (normally distributed) variation of the difference between sides (R - L)

about a mean of zero.  Most biologists interpret this random variation as evidence of developmental

instability (DI), because the effects of genotype and environment should be the same for both sides

and therefore cancel out of the difference (Mather, 1953; Van Valen, 1962; Palmer, 1996).

Unfortunately, even for traits that exhibit ideal FA (see Fig. 1a below), subtle departures

from symmetry may not be due solely to DI in the conventional meaning of this phrase (Palmer,

1994).  We believe this to be one of the most troubling aspects of FA studies.  If departures from

symmetry due to DI can not be distinguished from those due to random — but repeatable! —

environmental effects on form, FA can not serve as an index of DI.

The problem is simple:  observable random variation in a trait may have more than one

cause.  Developmental noise undoubtedly contributes to deviations from symmetry, and in some

cases it may be the primary cause.  However, random deviations from symmetry may also arise due

to random effects of the environment on phenotypically plastic traits (Section III.B) or to random

effects of wear and tear (Section III.B).

For biologically sensible estimates of DI, traits must be selected judiciously to avoid those

confounding factors (Section III.D).

II.B) DEPARTURES FROM SYMMETRY ESTIMATE A VARIANCE  .  .  .

Descriptors of FA estimate a variance, not a mean.  The greater the underlying DI, the

greater the observed variance of R - L.  Therefore, tests for differences in FA among individuals,

traits or samples are fundamentally tests for heterogeneity of variance.  They are not tests for

differences in means, in the sense that most biologists understand this.  Average asymmetry,

meaning average |R - L|, is just one convenient way to describe the variance of R - L (see Section

IV.A2 below).

This simple fact makes many of the problems associated with FA analyses painfully

obvious:  a) ME increases the variance but not the mean of a sample (Section V.A1), b) variances

are harder to estimate with confidence than means (Smith et al., 1982), c) differences in

distribution shape can have large effects on the variance (Section V.A1), d) a single outlier datum

will have a larger effect on the variance than on the mean (Section V.A1), and e) many tests for

heterogeneity of variance are quite sensitive to distribution shape (Section VI.A).

II.C)   .  .  .  WITH ONE DEGREE OF FREEDOM

Asymmetry in a single trait of a bilaterally symmetrical individual yields limited information

about underlying DI because the difference between sides estimates the variance due to DI with
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only one degree of freedom (Palmer, 1994, p. 360; Van Dongen, 1998; Whitlock, 1998), and

estimates of a variance with one degree of freedom have limited statistical power (Smith et al.,

1982).  For example, even among a hypothetical group of individuals of identical DI raised under

identical conditions, R - L will still vary simply due to sampling error:  by chance, some individuals

will be nearly symmetrical and some may be very asymmetrical.  This likely accounts for the

widespread observation that subtle asymmetries in one trait rarely correlate with subtle asymmetries

of other traits on the same individuals (Van Valen, 1962; Soulé and Couzin-Roudy, 1982; Palmer

and Strobeck, 1986; Dufour and Weatherhead, 1996; Møller and Swaddle, 1997; Houle, 1998).§

Nonetheless, if DI affects all traits in an individual similarly, then incorporating deviations

from symmetry from multiple traits should yield greater power to detect differences among

individuals (Section VI.B).  Each trait provides an independent estimate of the underlying DI of that

individual and therefore adds another degree of freedom to the estimate, so long as the potentially

confounding effects of variation in trait size are removed (Section IV.A3).

II.D) TRAIT COVARIATION AND TRAIT SIZE AFFECT FA

FA is influenced not only by the underlying DI, which affects both the right and left sides,

but also by negative covariation between the sides and by interactions with trait size.

If we knew the exact size a trait should be for a particular genotype and growth environment

— the target phenotype of Nijhout and Davidowitz (this volume) — the coefficient of variation of

that trait for a group of genetically identical individuals raised under identical environmental

conditions would describe that trait's DI, because all genetic and environmental effects on trait size

were eliminated.  This would be true for single, medial traits (e.g., bill length in birds), as well as for

one side of a paired, bilateral trait.  Under these conditions, all that would be gained by taking the

difference between the sides would be an estimate of DI based on two traits instead of one.

In the real world, of course, both genotype and environment affect trait size, so the variance

in a medial trait like bill length in a sample of individuals arises from a complex mixture of the

effects of genotype, environment, and DI.  Fortunately, for bilateral traits, genotype and environment

typically affect both sides similarly, so the right and left sides exhibit positive covariation.  This is

why the variance of the difference between two sides is such a convenient number:

var(Ri - Li)= var(Ri) + var(Li) - 2 covar(RiLi) (1)

where covar(RiLi) is the covariance between Ri and Li

covar(RiLi)= ∑[(Ri - R )(Li - L )] / (N - 1) (2)

and where R and L are the population means of the right (R) and left (L) sides, and N is the

number of individuals.  In theory, the term 2 covar(RiLi) removes all of the positive covariation

Rich Palmer
§ It also accounts for why the repeatability of FA can be as low as 20% even when the coefficient of variation of DI among individuals is 100% (Houle 2000 J Ev Biol 13:720).



Rev. 5/13/01 Palmer & Strobeck  -12-

between Ri and Li due to genotype and environment, leaving only the uncorrelated random variation

of Ri and Li due to DI.

This statistical trick yields a biologically meaningful descriptor of DI only so long as all of

the interdependencies between R and L due to genotype and environment are both positive and

captured by the term 2 covar(RL).  Unfortunately for studies of FA, if the covariation between sides

is negative, or if the variance of R or L depends on trait size, then var(R - L) becomes a complex

mixture of the effects of genotype, environment and DI, and cannot be interpreted as a simple

measure of DI.

Equation 1 yields some useful insights into why certain idiosyncrasies of FA analyses are

so important:  a) antisymmetry is effectively negative covariation between the sides (Van Valen,

1962), therefore subtle antisymmetry will inflate var(R - L), b) if a morphogen that influences trait

growth is limiting, such that an excess on one side yields a deficit on the other (Klingenberg and

Nijhout, 1998), this may also yield a negative covariation (normal covariant asymmetry, Palmer et

al., 1993) that would inflate var(R - L), and c) if the range of body sizes in a sample is large, and

var(Ri) and var(Li) increase with the trait means, then var(Ri - Li) no longer estimates a single DI

variance but rather a whole family of DI variances that depend on the trait's size distribution

(Section IV.A3).

Tests for antisymmetry (Section V.B3) and size dependence (Section IV.A4) are therefore

essential elements of a FA analysis.

II.E) LOG TRANSFORMATION YIELDS SIMPLE, SCALE-FREE ANALYSES

Where ME is relatively small (Section V.A1), log-transformation of raw measurements

offers a versatile and attractive solution to many elements of FA analyses.

1) A conventional result via an unconventional route  |R - L| / [(R + L) / 2] ≅ |ln(R/L)| = |ln(R) -

ln(L)| (Section IV.A7).  In other words, the difference between the natural logs is effectively

equivalent to the difference between the sides divided by the mean.  Both describe FA as a

proportion of the trait mean, and therefore yield dimensionless (scale free) indexes that allow

the FA variation of very different sized traits to be compared directly (Section IV.A7).

2) Avoiding undesirable size-dependent heterogeneity  Where FA increases with trait size, and

where considerable size variation exists within a sample, the frequency distribution of (R - L)

will be leptokurtic because it represents a mixture of individuals with different variances

(Wright, 1968; Section V.B2b).  This potentially confounds tests for FA relative to ME

(Section V.A) and for departures from normality (Section V.B2).  The frequency distribution

of ln(R) - ln(L), however, is not influenced by simple size-dependence, so any remaining

leptokurtosis must be due to other factors, such as outliers (Sections IV.A1e), the insidious

effects of ME (Sections IV.A6), true heterogeneity in underlying DI (Section V.B2b), etc.
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3) Improved power for measures of DI in an individual  Deviation from symmetry in a single trait

in an individual estimates the underlying DI variance with not much confidence (Section II.C).

Log-transformed measurements allow deviations from symmetry to be averaged for multiple

traits in an individual, thereby increasing the ability to detect DI differences among individuals

(Sections IV.B3, VI.B).  Statistical evidence for DI heterogeneity within a sample is an essential

prerequisite to tests for correlations between FA and individual quality, fitness, attractiveness,

etc.  With no evidence for DI heterogeneity, such tests are pointless.

4) Testing for differences among groups using multiple traits per individual  When comparing

samples of individuals, each trait provides an independent estimate of DI.  Unfortunately,

because FA is often proportional to trait size and traits typically differ in size, a simple pooling

of traits may yield misleading results.  However, ln(R) - ln(L) is not influenced by simple size-

dependence.  When combined with a multi-way Levene's test (Section VI.A), multiple traits may

be combined in a single analysis to test for differences among groups of interest as well as

interactions between groups (Section VI).

III CHOICE OF TRAITS

Several fundamental concerns should govern the choice of traits for a FA analysis.

III.A) BEWARE DEPARTURES FROM IDEAL FA

As noted ritually in discussions of FA variation, subtle departures from bilateral symmetry

generally take three forms, each defined by a unique combination of mean and variance of right-left

(R - L) differences in a sample:  fluctuating asymmetry (mean = 0, normal), directional

asymmetry (DA; mean ≠ 0, normal), and antisymmetry (mean = 0, platykurtic or bimodal).

Differences between the sides of individuals in traits that exhibit either DA or antisymmetry likely

arise from a complex mixture of genetic and non-genetic causes (see Palmer and Strobeck, 1992,

for a detailed graphical explanation).  Therefore, traits exhibiting DA or antisymmetry may not yield

reliable measures of DI (Palmer and Strobeck, 1992, 1996; but see Graham et al., 1993, 1998, for a

minority opinion).

III.B) BEWARE PHENOTYPIC PLASTICITY

Distinguishing departures from symmetry due to DI from those due to predictable

environmental effects is most troublesome for traits known to exhibit phenotypic plasticity.  Three

examples illustrate the problem.

First, many plants exhibit pronounced phenotypic plasticity (Bradshaw, 1965).

Significantly, measures of variability often differ among regions of single plants, as observed in
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tobacco (Paxman, 1956; Sakai and Shimamoto, 1965), Clarkia (Sherry and Lord, 1996), iris

(Tarasjev, 1995), and trees (Bagchi et al., 1989).  In addition, intraplant variability may vary over

time in individual plants (Roy, 1958), directions of deviation from symmetry in leaves may be

related to phyllotaxis (Dormer and Hucker, 1957), and directional departures from symmetry in

plants may be induced experimentally (Solangaarachchi and Harper, 1989; Desbiez et al., 1991).

Similarly, in foliose lichens local micro-climates may induce departures from radial symmetry in

individual thalli (Armstrong and Smith, 1992).  These observations suggest deviations from

symmetry, or from some organ-specific invariant (Freeman et al., 1993), arise due a complex

mixture of direct — presumably repeatable — effects of the environment, along with the random

effects of DI.  Therefore, departures from symmetry or other invariants (Freeman et al., 1993) in

plants seem like unreliable measures of DI.

Second, vertebrate bones grow by accretionary growth and are capable of significant

remodelling (reviewed in Olsen et al., 2000).  In human limb bones, differential use may increase

asymmetry (Malina, 1983; Trinkaus, 1994).  In addition, the right and left legs of humans exhibit

compensatory growth during ontogeny so that deviations from symmetry in an individual vary over

time (Hermanussen et al., 1989).  As a consequence, deviations from symmetry in vertebrate bones

may be difficult to use as an index of DI.

Third, many animals exhibit use-induced differences in structures used for food handling or

processing (Travis, 1994).  Where paired structures exist for manipulating prey, differential use of

one side may induce morphological asymmetries.  For example, in a shell-crushing crab, a harder

diet induces relatively larger claws (Smith and Palmer, 1994).  In the same species, serial

observations revealed that individual crabs forced to crush prey developed a more pronounced

preference to crush with one claw (either R or L) than those fed soft food (Palmer and Harrison,

unpublished).  Such a learned handedness may induce morphological differences between the

sides.  Therefore, in paired structures where one side may be used more than the other, departures

from symmetry may arise due to both differential use and DI.

For these reasons, traits known to be very plastic should be avoided:  environmentally-

induced asymmetries (Nijhout and Davidowitz, this volume) tell us nothing about DI.

III.C) BEWARE TRAITS VULNERABLE TO WEAR

Traits vulnerable to breakage or wear complicate interpretations of FA variation.  First, even

if both sides wear at the same rate on average, the amount of wear will rarely be identical.

Differences in wear between sides will likely be normally distributed about a mean of zero, and

therefore indistinguishable from variation due to DI (Section V.A1a).  Second, deviations from

symmetry due to breakage or wear can create an artificial dependence of |R - L| on trait size, since

loss of material from one side increases the asymmetry but decreases average trait size (Sullivan et

al., 1993).  Most importantly, departures from symmetry due to differential wear tell us nothing
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about DI.

III.D) PREFERRED TRAITS

Reliable traits for studies of FA should share several qualities.

III.D1) High repeatability  They should be easily and repeatably measured (metrical) or scored

(meristic; but see Palmer, 1994, for an extensive discussion of idiosyncrasies of meristic traits).

Considerable analytical angst may be avoided if several traits are examined for FA relative to

ME at the start of a study, and only those where mean |R - L| exceeds mean |M1 - M2| by at

least twofold are used.  Similarly, time invested early in a study to reduce ME by refining the

measurement protocol will be more than repaid by increased statistical power and confidence in

the final results.

III.D2) Low plasticity  They should not exhibit significant plasticity or remodelling (see Section

III.B).  They should not be traits where one side may be used more often than the other, or

where one side might experience different micro-environmental conditions.

III.D3) Low vulnerability to wear  They should not be vulnerable to wear or injury (see Section

III.C).

III.D4) Geometric independence  Where multiple traits are examined per individual, they should be

both geometrically and developmentally independent.  Linear measurements that share a

common endpoint, for example, are not geometrically independent:  variation in the position of

the shared endpoint will affect both dimensions.  Similarly, different dimensions of the same

structure (e.g., length and width of a single leg segment, or wing vein-lengths on the same wing)

may not yield independent estimates of DI because perturbations early in development affect the

entire structure or because they are more highly integrated developmentally (Leamy, 1993;

Klingenberg and Zaklan, 2000; Klingenberg 'integration' this volume).

III.D5) No or predictable size-dependence  The difference between sides should either be

completely independent of the mean, as in some meristic traits (Berry, 1968; Angus and Schultz,

1983; but see Palmer, 1994, for exceptions), or it should increase in proportion to trait size due

to simple allometry so that transformations removing trait size effects are valid (see Section

IV.A7).

(  -  -  -  -  Table 1 approximately here  -  -  -  -  )
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IV) DESCRIPTORS OF FA

IV.A) UNIVARIATE MEASURES OF FA

IV.A1) Standardized conventional FA indexes

Our earlier summary of FA indexes (Palmer and Strobeck, 1986; Palmer, 1994) allowed

relations among indexes to be seen more clearly.  It suffered from one unfortunate disadvantage:

numerical values for the different indexes were not directly comparable because some were mean

differences (FA1 - FA3), some were variances of untransformed differences (FA4 - FA7, FA10),

and some were log-transformed differences (FA8).  The indexes in each row of Table 1 here yield

descriptors of FA that are directly comparable numerically (see Sections IV.A2 and IV.A3 for

justification).  Unfortunately, FA3 is equivalent to FA2 (and FA6a equivalent to FA7a) only when

FA is proportional to trait size; if FA is independent of trait size FA3 underestimates FA2 by an

amount related to the size variation (see Appendix IV).  For trait size CV < 20%, FA3 deviates from

FA2 by less than 5%, but for a trait size CV of 40%, FA3 deviates from FA2 by nearly 20%.

The pros and cons of these indexes are discussed at length in Palmer (1994).  FA1 and FA2

are the most popular indexes by far, which is fortunate, because they are less affected by departures

from normality (skew or leptokurtosis) than are FA4a to FA6a.  The indexes in rows 2 and 3, along

with index FA10b, are dimensionless and express FA as a proportion of trait size.  This allows FA

to be compared directly among traits of very different overall size.

Although rather more cumbersome to compute, FA10a and FA10b have one major

advantage over all other FA indexes:  they describe the average difference between sides after ME

has been factored out.  Because of the biases ME introduces (Section V.A1), one or both of them

are worth computing to confirm that differences in FA among groups persist after ME has been

partitioned out, even if other indexes are used for more sophisticated tests of differences among

individuals or samples (Section VI).

Unfortunately, antisymmetry will artificially inflate all of these indexes and DA will inflate

those based on unsigned deviations (FA1-3, FA8a) (Palmer, 1994).  So tests for platykurtosis

(Section V.B3) and DA (Section V.B1) must precede any tests for differences in FA among

individuals or groups.

(  -  -  -  -  Figure 1 approximately here  -  -  -  -  )

IV.A2) Why an average deviation estimates a variance and an asymmetrical distribution of |R - L| is

not to be feared

For traits that exhibit ideal FA, R - L differences exhibit a normal distribution about a mean

of zero, and the standard deviation SDR-L describes the spread of R - L differences about that mean

(Fig. 1a).  indexes FA4a, FA5a, FA6a and FA7a all estimate SD(R-L) directly.
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Taking the absolute value of (R - L) differences amounts to flipping the left side of the

distribution over onto the right (Fig. 1b), so now twice as many observations exist to the right of

zero but none exist to the left.  This has two very important and useful consequences.  First, the

truncated normal distribution (Fig. 1b) is strongly asymmetrical (skewed to the right), so its mean

and variance are inextricably linked.  In fact, for a truly normal distribution, the CV|R - L| = SD |R - L|

/ mean|R - L| is a constant:  √((π - 2) / 2) = 0.756 (Houle, 1997).  If DI varies among individuals,

though, the resulting distribution of R - L is no longer normal (Section V.B2b), and this constant

no longer applies.  Second, the expected value (i.e., mean) of this distribution (Fig. 1b) differs from

the expected standard deviation of the signed asymmetry distribution (Fig. 1a) by a simple constant,

0.798 = √(2/π) (Kendall and Stuart, 1951).  Therefore, the mean|R - L| provides an unbiased

estimate of SD(R-L), although it is somewhat less efficient statistically (87.6%, Kendall and Stuart,

1951; Palmer and Strobeck, 1992).

Because the expected value of mean|R - L| = √(2/π) SDR-L = 0.798 SDR-L (Fig. 1), indexes

based on variances (FA4, FA5, FA6, FA7, and FA10 of Palmer, 1994) may be easily modified to

make them directly comparable to indexes based on average difference (FA1, FA2, FA3).  The

modified indexes of Table 1 show the appropriate modification.

Many biologists new to FA analyses are troubled by the highly skewed distribution of |R -

L|.  Some even try transformations to correct for this skew because they have been so rigidly

trained to correct for departures from normality before conducting any statistical tests.  But this fear

is unwarranted.  The skew of the |R - L| distribution is precisely why this index has its useful

properties!  Over forty years ago, Levene (1960) recognized that the difference between the means

of two truncated normal distributions (e.g., Fig. 1b) provided a robust and unbiased estimate of the

difference between the variances of the untransformed normal distributions (Fig. 1a).  This is the

basis of Levene's test for heterogeneity of variance, which is perhaps the most straightforward and

versatile test available for FA variation (Sections II.B and VI.A).

IV.A3) Trait size variation:  the problem

Generalizations about patterns of FA variation have been seriously hampered by the impact

of trait size variation (Palmer and Strobeck, 1986).  During normal growth, the variability of a trait

tends to increase with trait size (Lande, 1977; Van Valen, 1978):  the long bones of an elephant's

hind legs are more variable in absolute terms than the homologous bones of a mouse.  The real

question, of course, is whether one is proportionally more variable than the other.  Several

corrections for the size-dependence of variability have been proposed (Palmer and Strobeck, 1986;

Leung, 1998), including some rather peculiar ones (Evans and Hatchwell, 1993).  One index — trait

difference divided by trait mean [|R-L|/((R+L)/2)] — is widely used in many studies of FA

variation, but it has been criticized because of the apparent lack of independence of the numerator

and denominator (see Evans and Hatchwell, 1993, and the exchange between Sullivan et al., 1993,

and Cuthill et al., 1993).  Furthermore, this widely used index does not lend itself easily to tests for
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the significance of FA variation relative to ME because the average of the replicate measurements

must be computed first.  Clearly, a method that avoided these shortcomings would be preferred,

particularly if it were easier to use.

Dependencies of subtle asymmetries on trait size complicate the analysis and interpretation

of FA differences in several commonly encountered situations:

a) Inferred differences in DI among populations.  FA variation offers a valuable tool for

estimating the effects of genetic or environmental stress on different populations, and therefore

has many promising applications in biomonitoring and conservation (Parsons, 1992; Clarke,

1995; but see Heard et al., 1999, for a critical commentary).  However, for many organisms

overall body size, or the relative size of particular traits, also differ among populations due to

genetic or environmental effects on growth and form (Futuyma, 1986).  If FA varies with trait

size, and average trait size differs among populations, then inferred differences in DI among

populations may be either enhanced or obscured by size-dependent variability (Palmer and

Strobeck, 1986).

b) Inferred differences in DI among taxa or traits.  Comparative (e.g., Gummer and Brigham,

1995; Brakefield and Breuker, 1996; Crespi and Vanderkist, 1997; Bromberg and Jaros, 1998)

or historical studies (e.g., see Smith, 1998) of FA variation can yield significant insights into the

evolution of DI.  Many other questions remain to be addressed:  Are some categories of taxa

(e.g., homeotherms vs poikilotherms, arthropods vs vertebrates) or some categories of traits

(e.g., locomotory vs feeding vs reproductive, endoskeletons vs exoskeletons) more

developmentally predictable than others?  Unfortunately, estimates of DI based on FA are

greatly complicated by differences in overall trait size or dimensionality.

c) Estimating organism-wide DI based on multiple traits.  Deviations from symmetry in a single

trait provide at best a weak estimate of the underlying DI variance (Section II.C).  But

averaging asymmetries of multiple traits (Section VI.B) should increase the ability to detect

differences in DI among individuals because each trait provides an independent estimate of the

underlying DI (Palmer, 1994).  However, a composite measure of organism-wide DI based on

asymmetries of multiple traits must take into account the potentially confounding effects of

differences in trait size.

d) Within-sample heterogeneity in FA and leptokurtosis.  If FA varies with trait size, and trait size

varies within a sample, then the average FA for the sample will reflect a mixture of underlying

DI and size-dependent asymmetry variation (e.g., see Rowe et al., 1997).  This has the same

effect as combining groups of individuals with different variances:  both yield leptokurtosis in

the pooled sample (Wright, 1968; Palmer and Strobeck, 1992).  Therefore, interpreting within-
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population leptokurtosis as direct evidence for within-sample variation in DI (e.g., Gangestad

and Thornhill, 1999) seems risky at best, simply because leptokurtosis may arise in so many

different ways (Section V.B2b).

e) Correlations between trait or body size and individual quality.  In addition to the statistical

complications noted above, body size or trait size differences may reflect real differences in

individual quality.  Arbitrary statistical 'removal' of trait size effects may therefore potentially

obscure biologically significant differences in FA among individuals or groups (Palmer and

Strobeck, 1986; Leung, 1998).  Clearly, elimination of all size-dependent FA variation is not a

desirable outcome, since some may reflect true size-dependence of DI, so correction for 'size'

effects should be based on biologically sound, a priori models of growth.

IV.A4) Tests for size-dependence

Tests for size-dependence of FA may be done several ways.  Recall that |R - L| estimates

the SD of (R - L) with one degree of freedom (Section II.C).  Therefore a test of the association

between trait asymmetry |R - L| and trait size [(R+L)/2] is effectively a Levene's test for

heterogeneity of variance that tests for association between two continuous variables for each

individual — one estimating the variance, the other estimating the mean — rather than the

conventional test between two or more groups where only variance estimates are used.

Tests for size-dependence are best conducted before testing for ideal FA (Section V.B)

because size-dependent heterogeneity in asymmetry variation can yield leptokurtosis in the

frequency distributions of R - L or obscure subtle antisymmetry (Section IV.A3).

A parametric, least-squares linear regression of trait asymmetry |R - L| vs trait size

[(R+L)/2] is one potential test, but this test assumes homogeneity of variance (the variance in Y

should be independent of the value for X).  Clearly if the average |R - L| differs between traits of

different size, so will the variance because the mean and variance of absolute deviations are

inextricably intertwined (Section IV.A2).  Fortunately, heterogeneity of variances generally

decreases the power of a regression analysis, so the result of this test is conservative.  However,

parametric tests of association may be strongly influenced by one or two extreme observations, and

so are more likely to yield a spurious positive result if data are unusually distributed.

Non-parametric tests of association (Spearman and Kendall coefficients of rank correlation)

are preferred for this analysis because they do not assume homogeneity of variance and are not

influenced by a few extreme observations.  These two tests differ in how they weight pairs of ranks.

Spearman's ρ is preferred where the reliability of closely ranked values is uncertain (Sokal and

Rohlf 1995, p. 600), and is therefore somewhat more appropriate to FA data because of the

uncertainty of FA estimates.  Both yield similar values, though, for real FA data (see Step 8,

Appendix V).
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IV.A5) Correcting for trait size variation:  the standard solutions

The growth of most body parts arises from a simple multiplicative process:  replication of

cells.  As a consequence, trait variability (as measured by its standard deviation) increases in

proportion to the mean (i.e., the coefficient of variation, CV, is independent of the mean).  This is

why log transformations so nicely linearize relations between dimensions of almost any two traits

(Huxley, 1924; Huxley, 1932) and standardize the variances (Lewontin, 1966).

Several FA indexes correct for trait size effects by expressing deviations from symmetry as

a proportion of trait size (Table 1).  At the level of individuals, dividing the difference |R - L| or (R-

L) by the mean= (R + L)/2 is the most common transformation (FA2 and FA6a of Table 1).  This

transformation yields a convenient dimensionless index of FA, and therefore allows differences in

proportional FA to be compared directly among traits of very different sizes.  A similar

transformation may also be applied at the level of the entire sample (FA3 and FA7a of Table 1).

As justified elsewhere (Palmer and Strobeck, 1986; Palmer, 1994; Leung, 1998), however,

this transformation should not be applied blindly.  Depending on the pattern of size-dependence,

other transformations may be more appropriate (Leung, 1998).  In addition, where FA is fixed but

trait size varies considerably, a correction for size-dependence can generate spurious differences in

FA (Section IV.A6).  Fortunately, most morphological traits do exhibit simple multiplicative

growth, so these standard transformations seem appropriate in most cases.

(  -  -  -  -  Figure 2 approximately here  -  -  -  -  )

IV.A6) Correcting for trait size variation:  a fundamental concern

Measurement error (ME) seriously complicates tests for differences in FA among traits of

different size.  For normal studies of morphological variation, variation due to ME is a small

percentage (1 to 5%) of the true biological variation, therefore the increase in biological variation

relative to the mean is not seriously affected by ME.  Unfortunately, in FA studies, ME (e.g., as

ME1 of Table 3) may be a sizeable fraction (25 to 100%) of the true average difference between

sides, FA1= mean |R - L|.  So while the true biological variation may increase in proportion to the

mean (Fig. 2a), ME tends to be constant and independent of the mean, both for the same trait of

individuals of different sizes and among traits where the same protocol was used on each trait.  As a

consequence, larger individuals or larger traits will appear to exhibit proportionally lower FA than

smaller ones simply because ME is a smaller proportion of the between-sides variation (compare

Fig. 2b to Fig. 2c)!

Care must therefore be taken when testing for the size-dependence of FA, where larger size

is thought to reflect higher quality (reviewed in Møller and Swaddle, 1997).  If unscaled FA (e.g.,

FA1) declines with increasing trait size, this can only occur if DI is smaller in larger individuals,

since ME is typically constant.  Therefore larger individuals will exhibit lower FA.
However, if a size-scaled index (e.g., FA2) declines with increasing trait size, an additional
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test is required to determine whether this decline is greater than expected given a constant ME.  Two

approaches seem reasonable.  First, ask:  is SLOPEFA — the slope of proportional FA (e.g, FA2i)

vs trait size (Ri + L i)/2 — significantly steeper than SLOPEME — the slope of proportional ME

(e.g., mean(ME1) / [(Ri + L i)/2] vs trait size (Ri + L i)/2?  Because SLOPEME has negligible error

(relative ME declines roughly linearly with increasing trait size if the size range is less than twofold,

Fig. 2c), the statistical test is a simple one-sample t-test:  ts= (SLOPEFA - SLOPEME) / SEFA,

where SEFA is the observed standard error of SLOPEFA.  ts is then compared to critical values of

the Student's t distribution for N-1 degrees of freedom.  If the size range is relatively small (less

than two-fold), and two measurements have been taken per side, the expected SLOPEME = -ME1 /

S2, where ME1 is as in Table 3 and trait size S = mean[(R + L)/2] (see Appendix II for derivation).

Alternatively, divide the size range into three or more size categories.  For each size

category, compute FA10a (Table 1), which factors ME out.  Then, ask:  does the ratio FA10a /

SIZEc decline significantly with increasing SIZEc, where SIZEc = mean [(Ri + L i)/2] for each size

category.  Any decline in the ratio FA10a / SIZEc must be due to a true decline in proportional FA.

Such tests should be conducted whenever ME (as ME1, see Table 3) exceeds 10% of the

best estimate of the true average difference between sides (e.g., FA10a, Table 1).

(  -  -  -  -  Figure 3 approximately here  -  -  -  -  )

IV.A7) Correcting for trait size variation:  a new and versatile solution based on ln(R/L)

If ME (as ME1, Table 3) is small (e.g., <10% of FA1, Table 1), so that concerns about the

bias ME introduces to size-adjusted estimates of FA are minimal (Section IV.A6), then an

alternative approach to quantifying size-adjusted of FA based on FA8 (Palmer, 1994) offers several

advantages.

FA8 scales out size variation by taking the ratio R/L.  This ratio may have been the very first

index of FA variation ever used (Sumner and Huestis, 1921), well before the phenomenon of FA

was given a name (Ludwig, 1932).  Where DA and antisymmetry are absent, variation in this ratio

reflects the proportional variation about the expected mean of 1.0 (Sumner and Huestis, 1921).

Fear of ratios (e.g., Atchley et al., 1976), however, seems to have discouraged use of this index.

Indeed, variation in the ratio (R/L) does have one unfortunate property (Fig. 3).  Even if Ri

and Li are normally distributed, the frequency distribution of Ri /Li is skewed (Fig. 3a).  This skew

becomes more pronounced the greater the difference |R - L| as a proportion of the mean, (R+L)/2

(Fig. 2c).  Fortunately, the frequency distribution of log(Ri /Li) is no longer skewed, no matter how

large FA is relative to trait size (Figs. 3b, c).  Therefore FA8 of Palmer (1994), and its more useful

descendent FA8a (Table 1), are perfectly reasonable descriptors of FA.

Because both FA2 and FA8a (Table 1) estimate the size-scaled, between-sides variance, one

might ask how these two indexes are related.  Surprisingly, for all practical purposes, they are

numerically equivalent, if loge = ln (natural or Napierian logarithms) is used instead of log10

(Briggsian logarithms), because
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|ln(R/L)| ≅ |R - L| / [(R + L)/2] (3)

More precisely, letting d1 = (R - L) / [(R + L)/2], d1 is simply the first term of an expansion series

(see Appendix I for proof):

|ln(R/L)|= |d1 + d1
3 / 12 + d1

5 / 80 + …|

Significantly the second and all subsequent terms in this series can be ignored in studies of FA

because d1 is almost always less than 0.1 and typically closer to 0.01 (Palmer, 1996).  So even if

deviations from symmetry approach 10% of trait size (i.e., d1 = 0.1), the second term in this series

would be less than 0.001, and all higher order terms would be even smaller.  Therefore, FA2 and

FA8a (Table 1) are equivalent to at least three decimal places.

Furthermore, a trick from first-year calculus reveals a most useful relationship:

ln(R/L) = ln(R) - ln(L), so |ln(R/L)| = |ln(R) - ln(L)| (4)

Best of all, this equivalence means that numerical values of |ln(R/L)| actually describe FA as a

proportion of the trait mean, so no back-transformation is needed to obtain biological meaning.  A

simple loge transformation of all measurements opens up a whole spectrum of versatile yet

straightforward tests, because standard FA analyses applied to ln-transformed data are analyses of

size-independent or scale-free FA variation.

- Tests for FA relative to ME will be less sensitive to within-sample FA heterogeneity due to

size dependence (Section IV.A3d).

- Tests for departures from ideal FA (Section V.B) will not be confounded by FA heterogeneity

due to size dependence.

- Deviations from symmetry in multiple traits of an individual can be combined to yield a more

reliable estimate of individual, organism-wide DI (Section IV.B3).

- Multiple traits may be incorporated into a single analysis, thereby increasing the power of tests

for FA differences among individuals or groups (Section VI) without concerns about

unwanted effects of size-dependence (Section IV.A3).

Finally, since ln(X) = 2.303 log10(X), the same analyses may be done with either natural or

base 10 logarithms.  The only advantage to natural logs is that they yield numerical estimates of FA

that are directly comparable to FA2 (Eq. 3).  Of course, the confounding effects of ME apply to

FA8a just as they do to all size-standardized indexes (Section IV.A6).
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IV.B) MULTIVARIATE MEASURES OF INDIVIDUAL FA

IV.B1) Why combine information from multiple traits?

If an organism-wide level of DI exists, then each trait should provide some information

about it.  Unfortunately, the deviation from symmetry in a single trait estimates the underlying DI

variance of that individual with limited confidence (Section II.C).  However, if each trait provides an

independent estimate of the underlying DI variance, then combining information from multiple traits

should increase confidence in estimates of individual DI (Leary and Allendorf, 1989; Palmer, 1994;

Leung et al., 2000).  Effectively, each additional trait adds one additional degree of freedom to the

estimate.

(  -  -  -  -  Table 2 approximately here  -  -  -  -  )

IV.B2) Combining information from multiple traits- prior methods

Pooling information from multiple traits must be done with care for two reasons.  First, if

FA is not significantly larger than ME for some traits, differences among individuals may be

obscured by pooling traits.  Therefore, it is wise to exclude traits where FA is not significantly

larger than ME before computing these composite indexes.  Second, where FA is measured as a

proportion of trait size, these multivariate indexes are biased by differences in ME in the same way

as individual traits (Section IV.A):  larger individuals or traits will appear proportionally less

variable because ME makes up a smaller proportion of the between-sides variation (Fig. 2c).

Many multivariate indexes have now been advanced (Table 2).  Unfortunately, some are

vulnerable to size-dependent differences in FA (FA11, FA13), some are only meaningfully applied

to meristic traits (FA12), and some simply lack much statistical power (FA16).  Nonetheless, others

show real promise as general multivariate indexes of individual DI.

Leung et al. (2000) suggest two intriguing new indexes (Table 2).  One (FA14) divides each

value of |R - L| for a trait of a given individual by the mean |R - L| of that trait for the entire sample.

The second (FA15) is a purely nonparametric index based on rank orderings of |R - L|.  |R - L| is

ranked from high to low independently for each trait in a sample, and the composite measure of

individual asymmetry is the sum of these ranks for all traits of an individual.

Both indexes avoid the problems that arise when average FA differs considerably among

traits, either due to size-dependence or some other factor, because both express the asymmetry in a

single trait of an individual relative to the asymmetry in that trait for the entire sample.  But both

suffer from two limitations.  First, multiple computational steps are required to compute each index,

so they are more cumbersome to apply.  Second, both yield numerical descriptors of average FA

that are not directly comparable among studies.  So, although FA14 and FA15 may not be useful

descriptors of organism-wide DI, they do offer interesting alternative tests for differences in
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organism-wide DI among samples because they are independent of both trait size and average trait

FA.  Therefore, both seem useful as tests of statistical significance.

IV.B3) Combining information from multiple traits- average proportional FA

The simple transformation ln(R) - ln(L) removes scale effects by expressing the difference

between sides as a proportion of trait size (Section IV.A6).  This not only removes within-sample

heterogeneity due to size variation that can lead to leptokurtosis of (R - L) for individual traits

(Section IV.A3d), but it allows a composite measure of FA for an individual to be computed simply

as the average of the proportional deviations from symmetry of multiple traits (FA17, Table 2).  In

addition to being easier to compute, FA17 expresses the FA of an individual in numerical values

that are directly comparable to those obtained for single traits (FA2 and FA8a, Table 1).

Finally, a traits x individuals ANOVA on |ln(R) - ln(L)| allows a more powerful test for

heterogeneity of DI among individuals (Section VI.B), since it pools the information from multiple

traits to get a better estimate of the DI of each individual.

IV.B4) Landmark methods

The revolution that is sweeping morphometrics (Rohlf, 1993) offers some intriguing new

ways to examine the DI of both size and shape variation of complex structures (Auffray et al.,

1996; Smith et al., 1997; Arnqvist and Martensson, 1998; Klingenberg et al., 1998; Klingenberg

and McIntyre, 1998; Auffray et al., 1999).  This revolution focuses on landmarks —

developmentally homologous points in either 2D or 3D space (Bookstein, 1992) — rather than

conventional measures of distance used in traditional morphometric studies.

For a multivariate method, the procedure is not terribly complex.  In a nutshell, the analysis

involves four steps (see Klingenberg and McIntyre, 1998, for a nice graphical illustration):

a) Record landmark data.  Digitized XY coordinates of multiple landmarks of a single structure

(e.g., jaw bone, insect wing) are replicated at least twice independently for each side.

b) Align landmark sets.  All the constellations of landmarks for both replicates of both sides are

aligned relative to each other as closely as possible using a least-squares Procrustes fitting

procedure (Rohlf and Slice, 1990), after all the left-side landmarks have been reflected.  The

landmark constellations are first centered on their respective centroids, scaled to a common

centroid size (average deviation of landmarks from the centroid), and then rotated about the

centroids so as to minimize the squared deviations of all landmarks from their respective

means.

This transformation yields Procrustes coordinates, where all trait size variation has been

removed and only shape variation remains.  The distribution of observed landmarks about the

mean of each landmark for the entire sample is typically bivariate normal, so the deviation of

an aligned right-side landmark from the homologous landmark on the left side of an
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individual specimen (XYiR - XYiL) is conceptually the same as (Ri - Li)/[(Ri + L i)/2].  Each

landmark therefore contains information about DI.

c) Test for differences in FA relative to ME.  As in any FA analysis, the X and Y coordinates of

all the Procrustes coordinates now contain information about ME (the difference in locations

between replicate sets of landmarks) and asymmetry (true difference in location between

landmarks of the right and left sides), and the significance of asymmetry relative to ME may

be tested using a modification of the standard sides x individuals ANOVA procedure (Palmer

and Strobeck, 1986).  As with conventional descriptors of asymmetry, the frequency

distribution of (XYiR - XYiL) for each landmark, as well as the total shape difference between

sides [∑(XYiR - XYiL) / k, where k= the number of landmarks] must be tested for

antisymmetry (platykurtosis; Section V.B3).

d) Test for differences in FA among individuals or among groups.  The average right-left

difference of all the aligned landmarks yields a single, multivariate estimate of the deviation

from symmetry in an individual (FA18, Table 2), and these can then be analyzed using any of

the standard tests for FA differences among individuals or groups (Section VI).

Landmark analyses offer two significant advantages over conventional distance analyses.

First, trait size FA, overall trait shape FA, and the FA of individual landmarks, may all be compared

among individuals or groups.  This allows a much more detailed exploration of the effects of the

local vs global effects of DI on a structure (Klingenberg and McIntyre, 1998).  Second, FA is

estimated from multiple traits (landmarks), so it has the potential to give a more robust index of

individual DI.

But landmark analyses also have some shortcomings.  First, they are limited to single,

relatively rigid, elements (e.g., vertebrate bones, arthropod limb segments or wings, fish body

outlines).  Second, if FA is not greater than ME for all landmarks, then real FA differences at a few

landmarks may be swamped out by the noise of ME at others.  Third, the Procrustes alignment

procedure necessarily makes variation in any one landmark dependent on the variation of all others.

In other words, one highly variable landmark will induce apparent variation in the remainder via the

least-squares fitting algorithm.  Finally, corrections for allometry are not possible, so size-

dependent changes in shape, or variability, may confound the interpretation of FA variation.

Landmark analyses seem like a promising new approach to FA variation, but their full

potential (and limitations) have yet to be explored.

V) ANALYSES OF FA:  VALIDATING THE DATA

V.A) MEASUREMENT ERROR AND REPEATABILITY
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Although better than no predictor at all, deviation from symmetry is still a poor predictor of

underlying DI of an individual because of two sources of error:  measurement error (ME) and

sampling error.  First, deviations from symmetry are so small that they are typically similar in

magnitude to ME (Palmer, 1996).  Therefore, ME often contributes a high percentage of the total

between-sides variation (Fields et al., 1995; Van Dongen and Lens, 2000), and reduces the

correlation between observed FA and inferred underlying DI.  Second, the deviation from symmetry

of a single trait in an individual — even if it were measured without error — only estimates the

underlying DI of that individual with one degree of freedom (Section II.C). 

To have confidence that differences in R - L among individuals are not simply an artifact of

ME, the significance of FA relative to ME must be tested.  To have confidence that differences in R

- L among individuals reflect real differences in underlying DI, and not just sampling error, requires

an estimate of the hypothetical repeatability (Van Dongen, 1998).

V.A1) Measurement error- the problem

Boring as it may be, attention to ME is perhaps more important than any other aspect of a

FA study (Greene, 1984; Palmer and Strobeck, 1986; Swaddle et al., 1994; Fields et al., 1995;

Merilä and Björklund, 1995).  If this simple fact were better appreciated, many misleading

conclusions in the FA literature or failed studies of FA variation (see review by Simmons et al.,

1999) might have been avoided.

The claim by some FA enthusiasts that ME cannot generate interesting patterns reflects a

remarkable ignorance of elementary statistics.  Unlike conventional analyses, where ME simply

reduces the signal relative to the noise, ME poses serious problems for FA analyses.

a) Misinterpreting ME as DI.  Deviations from symmetry due to ME are indistinguishable from

those due to DI (Palmer and Strobeck, 1986; Palmer, 1994), because they are random,

independent, and normally distributed about a mean of zero.  Therefore, just as for random

deviations from symmetry induced by other causes (Section II.A), normally distributed

deviations about a mean of zero, by themselves, are not unambiguous evidence of DI.

b) ME and FA are often comparable.  Deviations from symmetry are often so small that they are

similar in size to typical errors in measurement (Greene, 1984; Palmer, 1996), therefore

measurements must be taken exceedingly carefully to have any hope of detecting real

differences in FA among samples.

c) ME artificially inflates FA.  Increasing ME actually increases FA for all indexes of FA variation

except those that factor out ME (e.g., FA10a, FA10b, Table 1).  Therefore differences in ME,

for example among different samples of the same trait measured on different days, can yield
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differences in FA that are entirely artificial (see Fig. 7 of Palmer, 1994).  More seriously, ME is

likely to differ consistently among traits for a variety of reasons.  Therefore artificial differences

in FA among traits could arise entirely due to differences in ME.

d) ME can not be partitioned out of individual FA for a single trait.  Although average ME may be

partitioned out of the between-sides variation for a sample via ANOVA (Section V.A5), it can

not be partitioned out of deviations from symmetry in a single trait in an individual.

e) ME outliers create leptokurtosis.  Outlier measurements, due to causes other than ME such as

recording errors, transcription errors, data entry errors, calibration errors, sorting errors, etc., are

a common cause of leptokurtosis in frequency distributions (see Steps 1 & 2, and Table V.6, of

Appendix V).  Therefore, leptokurtosis may not be as reliable an indicator of within-sample

heterogeneity of DI as some would like (Gangestad and Thornhill, 1999).

f) High ME can create artificial size-dependent FA.  If ME (as ME1, see Table 3) is comparable to

FA (as FA1, Table 1), and if considerable variation in trait size exists within a sample, FA as a

proportion of trait size (e.g., FA2, Table 1) will decline with increasing trait size (Section IV.A6;

Fig. 2).  Also, for traits with the same ME, smaller traits will appear to exhibit lower FA as a

proportion of trait size (e.g., FA2) than larger traits.

(  -  -  -  -  Figure 4 approximately here  -  -  -  -  )

g) ME obscures FA variation.  Finally, as it does in any conventional analysis, ME potentially

obscures differences in underlying DI.  Even in the absence of ME, statistical support for

parallel variation in |R - L| between pairs of traits on the same individuals may be low (Fig. 4),

simply because |R - L| estimates the underlying DI variance with only one degree of freedom

(Section II.C).  For example, even with high DI (16-fold range) and with no ME, asymmetries

in one trait will only show a correlation of < 0.3 with asymmetries of other traits on the same

individuals.  Introducing ME reduces these correlations even further (Fig. 4).

(  -  -  -  -  Table 3 approximately here  -  -  -  -  )

V.A2) Measurement error- description

Discussions of ME can be quite confusing if underlying error variances such as σ2
ME

(the variance of repeat measurements on a single side, Table 3a) are not distinguished from

numerical descriptors of ME, like ME1 (Table 3b).  Therefore when ME is referred to in general,

it should mean σ2
ME.  However, when referring to a specific descriptor of ME some convention is

required to indicate which one is being used (e.g., Table 3).

Measurement error may be quantified in several ways, some of which are more informative

than others (Table 3).  Some descriptors (ME1, ME2) report ME in the original units of
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measurement.  Because they describe the actual ME for a trait, at least one of these should be

reported for each trait in every FA analysis (see Appendix V).  One descriptor (ME3) simply

expresses the average difference between replicate measurements as a percent of average difference

between sides.  Others (ME4, ME5) don't describe ME directly, but rather express FA variation as a

proportion of the total between sides variation, which includes ME.  ME4 and ME5 are simply

different ways of measuring repeatability, and are often reported in FA studies because they provide

a standardized measure that is easy to understand.  The larger the repeatability, the smaller the ME

relative to FA.

Some might be puzzled by the equations for ME4 and ME5 (Table 3), both of which yield

repeatabilities (rI) but appear to differ from the more familiar equation (Lessels and Boag, 1987;  rI
is sometimes referred to as the "intraclass correlation coefficient", thought it doesn't mean

correlation in the sense that the term is used now, Sokal and Rohlf, 1995, p. 214):

      s2
x

rI = (5)

s2
x + se

2

where s2
x is the best estimate of the true underlying variance in some variable x and se

2 is the

error variance (note that the denominator [ s2
x + se

2 ] is actually the observed variation, which

includes both the underlying and error variation).  The equations differ, though, only because ME4

and ME5 refer to MS from ANOVA, which may include one or more variance components,

whereas Eq. 5 refers to the actual underlying variances.  ME4 and ME5 yield the same number as

Eq. 5 because the expected value for MSindividuals or MSinteraction is se
2 + n s2

x and that for

MSerror is se
2  (Palmer and Strobeck, 1986; Sokal and Rohlf, 1995, p. 214).  Substituting these in

the equations for ME4 or ME5 yields

     ( se
2 + n s2

x ) - se
2         n s2

x         s2
x

rI =    =   =  .

( se
2 + n s2

x ) + (n - 1) se
2 n s2

x  + n se
2 s2

x  + se
2

ME4 and ME5 are simpler because they may be computed easily using the MS from ANOVA.  No

fiddling is needed to estimate the variance components of Eq. 5.  Furthermore, this approach avoids

the confusion that arises commonly when MS from ANOVA, which are indeed variances, are

mistaken for the individual variance components that contribute to them (Lessels and Boag, 1987).

V.A3)  Perils of repeatability

Many studies of FA variation express ME as a repeatability coefficient (ME4, ME5, Table
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3).  These coefficients are appealing because they express the variation among traits as a proportion

of the total variation (including ME).  So, for example, a repeatability of 0.9 or 90% implies that

90% of the total observed variation among a set of replicate measurements is due to underlying

variation in the trait being measured and 10% is due to error.  In studies of FA, it is critical to

remember that the 'trait' whose repeatability should be measured is deviation from symmetry (R -

L), not trait size (R or L).  Even if the repeatability of trait size measurements is very high, the

repeatability of FA may be extremely low, simply because FA is typically such a small percentage

of trait size (Fields et al., 1995).

Measures of %ME (ME3) or repeatability (ME4, ME5), however, all suffer from the same

limitation.  On the one hand, as dimensionless numbers, they are convenient and easy to interpret.

On the other hand, true ME can not be obtained from them with confidence because differences in

repeatability or reliability can increase due either to a decrease in ME or to an increase in FA (Table

3d).  More seriously, values for repeatability may be greatly inflated, or %ME greatly decreased, if

an investigator specifically chooses individuals with the widest possible range of asymmetry

variation to estimate ME.  In other words, if the subsample of individuals on which repeatability is

estimated exhibits a wider range of FA than other samples in the study, then the repeatability will be

artificially inflated.  Finally, to obtain an actual measure of ME (with units) requires substituting

some estimate of FA into the above equations.  Fortunately, this problem does not arise where

repeat measurements have been taken on all individuals in a study, and where ME3, ME4, or ME5

are computed using all the data.

As a consequence, whenever statistical measures of repeatability are used to describe the

size of FA relative to ME, the ME should also be given, either as ME1 or ME2.  Either will be in the

units of original measurement, and the two are easily interconverted (Table 3).

V.A4)  Hypothetical repeatability (R) and among-individual variation in DI

Two issues arise when testing for associations between individual FA and a particular

phenomenon of interest, or when estimating the heritability of FA.  First, grounds must exist for

believing that DI truly varies among individuals.  Second, correlations with FA will underestimate

correlations with DI.

a) Tests for DI heterogeneity.  The total observed FA variation within a sample, VR-L = var(R-L) =

FA4 (Palmer and Strobeck, 1986), arises from at least three sources (modified slightly from the

notation of Whitlock, 1998):

i) VDI = true variation in the DI among individuals within a sample (VDI is therefore the

variance of a set of DI variances).

ii) Verr = variation due to the intrinsic uncertainty of deviations from symmetry as predictors of

the true DI variance in a given individual (i.e., observed values of (R - L) will still vary

considerably even among individuals of identical DI; Section II.C), and
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iii) Vme = variation due to ME.

In a sample where DI truly varies among individuals, the total asymmetry variation among

individuals VR-L is some function of VDI, Verr, and Vme.  Therefore, before estimating the

heritability of DI — effectively a correlation between parents and offspring — or testing for

correlations between individual DI and other phenomena of interest, the following must be true:

VR-L > Verr + Vme.  If VR-L is not significantly greater than expected for a given Verr + Vme then

no justification exists for testing for correlations with individual DI (i.e., VDI is negligible).

The simplest statistical test for DI heterogeneity within a single sample is a test for

leptokurtosis of a single trait (Section V.B3).  If VDI contributes significantly to var(R-L), then the

frequency distribution of (R-L) must be leptokurtic (Wright, 1968), because it represents a mixture

of individuals each with different DI (e.g., see Fig. 1 of Van Dongen, 1998).  Alternatively, where

multiple traits have been measured, a traits x individuals ANOVA provides a more powerful test for

DI heterogeneity among individuals (Section VI.B).

b) Corrections for bias.  Even if DI varies significantly among individuals, correlations with

individual |R-L| will consistently underestimate correlations with DI, because of uncertainty

introduced by Vme and Verr (Whitlock, 1996).  The hypothetical repeatability (Van Dongen, 1998)

attempts to correct for such a bias.

Equations for hypothetical repeatability (R, Table 3) have been derived by Whitlock (1996,

1998), Björklund and Merilä (1997) and Van Dongen (1998).  Just as it does for a conventional

repeatability (e.g., Eq. 5), R attempts to estimate the true variation in DI among individuals as a

proportion of the total observed FA variation in a sample:  R = VDI / VR-L.  In addition, R may be

used to adjust heritabilities, or correlations with |R - L|, to better reflect correlations with underlying

DI (Whitlock, 1996).

When the results of several published studies were examined more closely, |R - L| of one

trait correlated more strongly with |R - L| of a second trait as R increased (Van Dongen and Lens,

2000), reinforcing the belief that differences in DI among individuals are expressed organism-wide

and that pooling information from several traits should provide a better estimate of underlying

individual DI (see also Lens and van Dongen, 1999, and Section VI.B below).  However, in a

similar analysis of published heritability estimates, heritability of FA did not increase with

increasing R, suggesting that reports of significant heritability of FA may be spurious (Van

Dongen and Lens, 2000).

c) Problems with hypothetical repeatability.  The concept of hypothetical repeatability is an

important one for studies of FA variation among individuals.  If R could be estimated reliably it

would be a valuable tool for determining when correlations with |R - L| should be expected, and for

adjusting those correlations to provide a better estimate of correlations with underlying DI
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(Whitlock, 1996).  We therefore applaud the attempts to derive a quantitative descriptor (Whitlock,

1996; Björklund and Merilä, 1997; Van Dongen, 1998; Whitlock, 1998).

Unfortunately, existing derivations of R all appear flawed in one way or another.

Björklund and Merilä (1997) point out that the CV|R-L| =SD |R-L| / mean|R-L| is a constant.  But this

is only true if DI is invariant.  The more DI varies among individuals within a sample, the more

leptokurtic the distribution of (R-L) becomes (Section V.A4a), and the greater SD|R-L| becomes

relative to the mean|R-L|.  The suggestion that many observed CV|R-L| are much greater than

expected due to large ME (Björklund and Merilä, 1997) is simply not correct.  Leptokurtosis is

likely responsible since the value for CV|R-L| depends on the leptokurtosis of (R-L), not on ME.

The derivations of Whitlock (1996; 1998) and Van Dongen (1998) appear to make a

different mistake.  Both derive R by summing variances among individuals of different underlying

DI.  But variances are additive only if the mean is the same, not if the means differ.  The expected

mean of (R-L) is zero, and therefore constant, so summing var(R-L) is entirely appropriate.

However, the expected mean of |R-L| clearly depends on the variance (see Fig. 1).  Therefore, for

two samples of different variance, var|R-L|pooled ≠ var|R-L|1 + var|R-L|2.  The impact of this error

on derivations of R is unclear.

In addition, the numerical value for R is still an estimate of the true R of a sample, so it is

subject to uncertainty.  Before too much faith is placed in R as tool to correct for sampling error

and ME, it would be helpful to know the standard error of R for a variety of combinations of VDI,

Verr, and Vme.  If R differs less than 2 SE from zero, then its value as a correction is dubious at

best.  Valuable as R may be, we still need a reliable derivation and a standard error.  Conclusions

based upon existing derivations are therefore difficult to judge.

Finally, although likely obvious to many, a simple observation is worth repeating:  the low

correlations reported for many associations with FA may simply reflect truly low correlations, not

an artificial lowering due to ME and sampling error.

V.A5) ANOVA procedure testing the significance of FA relative to ME

The two-way, mixed model ANOVA procedure (sides= fixed, individuals= random)

advanced by Palmer and Strobeck (1986) to test for the significance of FA relative to ME is easy to

conduct and easy to interpret (explained in detail in Palmer, 1994).  This procedure also:

- tests for the significance of DA

- allows an estimate of repeatability to be computed (ME5, Table 3), and

- permits the only estimates of FA where ME has been factored out (FA10a, FA10b, Table 1),

For these reasons, it remains a valuable tool for studying FA variation using either conventional

(Palmer, 1994; Swaddle et al., 1994; Merilä and Björklund, 1995; Björklund and Merilä, 1997;

Van Dongen, 1999) or multivariate (Klingenberg and McIntyre, 1998) measures of asymmetry.
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Appendix V illustrates a complete worked example of the procedure.

V.A6) What to do when replicate measures of all individuals is not practical

Sometimes the sheer size of a study is so large that replicate measurements of all traits in all

individuals is impractical.  Also, in unusual cases where ME is small (e.g., where ME1 of Table 3 is

<10% of FA1), replicate measurements of all traits in all individuals may not be necessary.  Under

these circumstances, it is sufficient to take repeat measurements on only a subset of individuals.  A

sides-x individuals ANOVA (Section V.A5) on this subset is still necessary to confirm that FA

exceeds ME, as is a report of the level of ME (as ME1 or ME2, Section V.A2).

It should be obvious that if greater care is taken during repeat measurements than during the

rest of the study, the true ME will be underestimated and the conclusions about FA variation (or its

absence) may be meaningless.  Therefore, every effort must be made to ensure the measurement

protocol when estimating ME on a subsample includes all the sources of error present in the main

study (day-to-day variation, among-observer variation, wear and tear on specimens, calibration

errors in digitizing systems, effects of inexperience, etc.).  One solution would be to conduct the

first set of replicate measurements of a subsample of specimens at the beginning of the study and

the second set at the end.

V.B) DEPARTURES FROM IDEAL FA

V.B1) Directional asymmetry

Traits where one side is consistently larger than the other in the same direction (DA)

complicate both the analysis and interpretation of FA variation.  Analyses are complicated, because

a number of FA indexes, including FA1, FA2, FA3 and FA8a (Table 1), are artificially inflated by

DA (Palmer, 1994).  Interpretation is complicated because even if DA is factored out statistically

(Graham et al., 1998), the remaining between-sides variation is likely a complex mix of directional

genetic effects, directional environmental effects (likely via the effects of growth rate on allometry),

and DI.  Therefore, as a rule, if traits exhibit significant DA they are best excluded from FA

analyses (Palmer and Strobeck, 1992; Palmer, 1994).

Unfortunately, sometimes even very slight DA may become significant statistically in

studies involving large samples.  Under these circumstances, too many data might be lost if these

traits were excluded, and factoring out DA would seem desirable.  The critical question here is:  At

what point is DA so small that it is unlikely to confound interpretations of FA variation?  Any rule

is arbitrary, but a potentially useful rule of thumb may help.  If DA, as mean(R - L), is no larger

than FA4a (Table 1), then the predisposition towards one side is less than the average deviation about

mean(R - L).  Therefore, since the underlying variation in DA would likely be 10 - 20% of the mean

DA — the CV for many traits is commonly in this range (Lande, 1977) — deviations about the

mean DA would be due largely to DI.
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One insidious way that spurious DA may creep into a FA study is via human handedness.

Because most humans are strongly handed (Perelle and Ehrman, 1994), measurements on the right

side of an organism might be made slightly, but consistently differently from those on the left.  This

is a potentially serious problem where measurements require considerable manual dexterity.  Helm

and Albrecht (2000) report a striking example where statistically significant DA arose exclusively

due to the handedness of the observers and suggest ways to avoid this problem.

Tests for DA are an essential step in any FA analysis.  They ask nothing more than whether

the mean (R-L) differs significantly from zero.  Many conventional tests may be applied, including

one-sample t-tests of mean(R - L) vs zero, paired t-test of R vs L, the sides x individuals ANOVA

procedure (Section V.A5), as well as others (Palmer, 1994).

(  -  -  -  -  Table 4 approximately here  -  -  -  -  )

V.B2) Departures from normality- the problem

Many factors may cause the distribution of R - L to depart from normality (Table 4).  Some

departures are mere inconveniences that have nothing to do with DI (Table 4, a.i, a.ii, b.i, and b.ii,

b.iii).  Others reflect unusual mixtures of different kinds of asymmetry variation (Table 4, a.iii, a.iv,

a.v, and b.iv) that may or may not be detectable via mixture analysis (Van Dongen et al., 1999).

However, some (Table 4, b.v, b.vi, and c.i) are likely occurrences in studies of subtle asymmetries

and have significant implications for analysis and interpretation.

a) Skew.  Skew — the third central moment of a frequency distribution (Sokal and Rohlf, 1995) —

refers to departures from normality that are asymmetrically distributed about the mean.  It ranges

from  -∞ (an elongate tail to the left) to +∞ (an elongate tail to the right).  For a normal distribution,

skew is zero.

The most common causes of skew are either anomalous data or mixtures of different types

of asymmetry variation (Table 4a).  Fortunately, the former are readily fixed via careful inspection

of the data (see Appendix V for an example of detection and correction), and the latter are largely

hypothetical, and therefore not likely a common problem.

b) Kurtosis, general.  Kurtosis — the fourth central moment of a frequency distribution (Sokal

and Rohlf, 1995) — refers to departures from normality that are symmetrically distributed about the

mean.  Values of kurtosis range from -2 (extreme platykurtosis) to +∞ (extreme leptokurtosis).

Unfortunately, the kurtosis statistic has no simple verbal description (Balanda and MacGillivray,

1988).  As a consequence, the history of its interpretation abounds with color and controversy

(Balanda and MacGillivray, 1988; Dodge and Rousson, 1999).  Reviewing this history helps reveal

why a given value of kurtosis is hard to interpret as revealing something specific about the shape of

a frequency distribution.
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Until the dawn of computers, few biologists or statisticians were interested in verbal

interpretations of kurtosis.  Originally the sign of the kurtosis statistic was interpreted to reveal a

joint excess (positive- or lepto-kurtosis), or a joint deficit (negative or platy-kurtosis), in both the

peak and the tails of a frequency distribution (see Finucan, 1964).  Later, it was interpreted to

indicate merely the direction that the frequencies at the center of a distribution departed from a

normal distribution:  positive kurtosis meant an excess and negative kurtosis a deficit.  But this was

confirmed to be incorrect in four specific examples (Kaplansky, 1945).  Ali (1974) then suggested

kurtosis was best interpreted only as the tailedness of a distribution regardless of what was

happening at the peak — positive indicating heavy tails and negative indicating light tails — because

observations in the tails contribute disproportionately to kurtosis.  Darlington (1970, p. 19) argued that

"kurtosis is best described … as a measure of unimodality versus bimodality", or the tendency

toward bimodality of a distribution:  the more negative the kurtosis the more pronounced the

bimodality.  But Chissom (1970) showed that purely rectangular 'unimodal' distributions yielded

negative kurtosis, and Hildebrand (1971) showed that not all bimodal distributions yielded negative

kurtosis.  Double gamma bimodal distributions (where, at each mode, the distribution of

observations may be quite asymmetrical or skewed) could yield kurtosis values that ranged from -2

to 3 (Hildebrand, 1971).  Perhaps most seriously of all, Balanda & MacGillivray (1988, p. 114)

showed how a single value of kurtosis that is considered mesokurtic (normal) could nonetheless

arise from distributions that were either bimodal (double gamma) or narrow-peaked

(TukeyLambda; their Fig. 2)!  Clearly, the kurtosis statistic by itself tells us nothing specific about

distribution shape.  Perhaps this should come as no surprise, since a single number is unlikely to

capture reliably the many possible ways a symmetrical distribution might depart from normality.

Moors (1986) advanced perhaps the most useful interpretation of kurtosis.  Kurtosis

describes reasonably well the density of observations at two specific locations on a frequency

distribution:  one standard deviation above and one standard deviation below the mean (see Fig. 1a).

An excess at these two locations yields negative kurtosis (platykurtosis) whereas deficiencies there

yield positive kurtosis (leptokurtosis).  This view nicely explains how a bimodal distribution can

yield either negative or positive values of kurtosis depending on how close the peaks are to the

mean.  A bimodal distribution, where the distribution about each mode is normal and close to ± 1

SD from the mean, will yield the most extreme negative kurtosis.

Fortunately for studies of FA, most platykurtic distributions of right-left differences appear

to be composed of two peaks each of which is roughly normal and similar in size (see Fig. 6

below).  Under these conditions, each mode will lie very close to ± 1 SD from the mean,

particularly as the bimodality becomes more pronounced (Chissom, 1970).  Therefore the kurtosis

statistic should be a reasonably sensitive measure of the kind of bimodality likely to be observed in

studies of bilateral variation.

That kurtosis describes the concentration of observations around ± 1 SD from the mean
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may be seen easily in the descriptive formula for kurtosis (Darlington, 1970; Sokal and Rohlf,

1995):

k= [∑(Xi - X )4 / (N*SD4)] - 3 (6)

where N is the sample size, X is the sample mean, Xi is the value of X for individual i, and SD is

the standard deviation of the sample computed using N rather than N-1.  For a given value of the

numerator, the larger the SD, the smaller the kurtosis.

The constant three is an arbitrary correction because, if uncorrected, k= 3 for a normal

distribution.  This correction term, which ensures k= 0 for a normal distribution, makes the values

for kurtosis parallel those for skew, which is zero for a normal distribution with no correction.

c) Leptokurtosis.  Leptokurtosis can arise from many causes (Table 4b).  One or a few extreme

measurement errors, or a few injured or damaged individuals, will increase the length of the tails of

a frequency distribution of (R - L) and yield leptokurtosis (Table 4, b.i, b.ii).  Often these can be

detected and eliminated from an analysis by standard outlier tests (see Step 2, Appendix V for an

illustration of detection and correction).  Variation in ME can also yield leptokurtosis (Table 4,

b.iii), but careful records of when or by whom data were recorded can reject this possibility.  These

latter three causes are likely much more common than generally acknowledged because few studies

present data in such a way as to check for them.  Leptokurtosis due to a mixture of FA and

antisymmetry (Table 4, b.iv) is certainly possible, but largely hypothetical.

The two remaining causes of leptokurtosis, both of which involve within-sample

heterogeneity in FA, are widespread and significant to studies of FA.  First, heterogeneity will arise

if |R - L| increases with trait size (Section IV.A3d) and considerable size variation exists within a

sample.  This heterogeneity doesn't necessarily reflect heterogeneity in underlying DI, it may

simply represent size-dependence of variability.  Fortunately, if |R - L| scales isometrically with trait

size, (R+L)/2, and ME is not too large (Sections IV.A6, IV.A7), size-adjusted indexes of FA (FA2,

FA6a, FA8a, Table 1) will eliminate this source of heterogeneity.

Second, if two samples of different FA are pooled, the resulting mixture will be leptokurtic:

the more extreme the differences in FA between the two samples the greater the leptokurtosis

(Palmer and Strobeck, 1992).  This occurs any time samples with different variances are pooled

(Wright, 1968).  Gangestad & Thornhill (1999) and Van Dongen (1998) generalized this

observation further, showing that a mixture of individuals with many different levels of DI also

exhibits leptokurtosis.  This type of heterogeneity — real among-individual variation in DI — is not

only likely in studies of FA, but must exist any time significant correlations are found or anticipated

between individual |R - L| and some phenomenon of interest (Section VI.B), since such

correlations, if not spurious, absolutely depend on the existence of among-individual variation in

DI.

Unfortunately, as should be apparent from Table 4b, significant leptokurtosis by itself is
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not strong evidence for within-sample variation in DI (b.vi) unless other potential causes (b.i - b.v)

have been rejected.  Therefore the claim that widespread leptokurtosis in studies of FA reveals

strong evidence of widespread within-sample heterogeneity in DI (Gangestad and Thornhill, 1999)

seems premature.  Once again, just because results are consistent with an interesting biological

explanation does not mean that explanation is the correct one.

d) Platykurtosis.  Platykurtosis arises primarily due to antisymmetry (Table 4c).

The current meaning of the term antisymmetry was advanced by Van Valen (1962, p. 126)

as "a bimodal distribution of the signed differences between the sides … or, in less extreme cases, a

tendency toward platykurtosis as compared with a normal distribution of the same variance".  This

definition is more general than Timoféeff-Ressovsky's (1934, p. 79), which referred to an absence,

or virtual absence, of symmetrical individuals in a sample.

Curiously, the etymology of the term 'antisymmetry' seems widely unappreciated.  For traits

that exhibit antisymmetry, the frequency distribution of R - L differences shows a distinct valley

between two, typically equally-sized, peaks that are equidistant from zero (see Fig. 6).  This valley

of 'missing' observations is centered on zero the same way the peak is centered on zero for

symmetrical traits, hence the 'anti' in antisymmetry!

Both DA (Section V.B) and antisymmetry reflect an innate predisposition towards

asymmetry (Palmer and Strobeck, 1992).  For all practical purposes, the difference between them is

simply the predictability of the direction of that predisposition.  For DA that predisposition is

always toward the same side, but for antisymmetry that predisposition is random in direction

(Palmer et al., 1993).  Unfortunately, although not all that different in underlying cause, DA is easy

to detect statistically (Section V.B1) but antisymmetry is not.

V.B4) Tests for kurtosis

Tests for significant kurtosis (k) are complicated by three factors.  First, different statistical

packages compute kurtosis in different ways.  Some (Statview, Systat) compute k using Eq. 6

above.  Others (SPSS, Excel) compute an 'unbiased estimate' of k (Sokal and Rohlf, 1995):

(n + 1)n ∑y4 3(n - 1)2

k= - (7)

(n - 1)(n - 2)(n - 3) s4 (n - 2)(n - 3)

where y refers to a deviation from the mean.  Therefore care must be taken to ensure the proper

tests are conducted when assessing the statistical significance of a kurtosis estimate.  Fortunately,

the following simple test reveals which formula is being used.  For a sample of four points (-1, -1,

+1, +1) k= -2.0 with Eq. 6 and k= -6.0 with Eq. 7.

The relative merits of Eq. 6 compared to Eq. 7 depend entirely on how the kurtosis statistic
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is used.  If only a description of kurtosis is required, so that it may be tested for statistical

significance, then Eq. 6 is preferred.  However, to predict the kurtosis of a population based on the

observed kurtosis of a subsample, Eq. 7 is preferred.  Eq. 6 yields a biased estimate of k for small

sample sizes which Eq. 7 avoids (Sokal and Rohlf, 1995).  As sample size increases the two forms

converge (Table 5).

(  -  -  -  -  Figure 5 & Table 5 approximately here  -  -  -  -  )

A second complication is distribution symmetry.  The frequency distribution of the kurtosis

statistic, regardless of how it is computed, is highly skewed unless sample sizes are large (>200,

Fig. 5).  Therefore the single standard error sometimes suggested for testing the significance of

kurtosis (Sokal and Rohlf, 1995; Zar, 1999), or yielded by some statistics packages, will yield very

misleading conclusions, particularly about the significance of platykurtosis at small sample sizes (N

< 100).  To assist with studies of FA, we tabulate critical values for both platykurtosis and

leptokurtosis over the range of sample sizes normally encountered in studies of FA (Table 5).

More extensive critical values for kurtosis based on Eq. 6 may be found in the original sources

(Pearson and Hartley, 1966; D'Agostino, 1986) and for Eq. 7 (leptokurtosis only) in Zar (1999,

Table B.23).

(  -  -  -  -  Figure 6 approximately here  -  -  -  -  )

A third complication is limited statistical power.  Unless sample sizes are rather large, the

kurtosis statistic has limited power to detect antisymmetry (Fig. 6), even when the proper critical

values are used (Table 5).  For N= 10, the power of k — the percent of trials that reached statistical

significance — barely surpassed 60% even when the distance between peaks (2D) was ten times the

SD of (R-L) about each peak.  Similarly, for N= 20, the power of k was only 80% (α = 0.05, Fig.

6a) or 60% (α = 0.01, Fig. 6b) when the distance between peaks (2D) was five times the SD of (R-

L) about each peak.  When antisymmetry is weak, such as when the distance between peaks is twice

the SD about each peak, the power is severely limited:  sample sizes of 200 only achieve 60% and

about 30% power for α = 0.05 and α = 0.01, respectively.  Mixture analysis may provide some

help here (e.g., see Van Dongen et al., 1999), particularly if antisymmetry is assumed to arise as a

mixture of two normal distributions that are equidistant from zero, but to our knowledge, no power

analysis comparable to that of Fig. 6 has been conducted.

Because leptokurtosis arises from a heterogeneous mixture of DI variances, a more

powerful and direct test for heterogeneity of DI among individuals is a traits x individuals ANOVA

on |ln(R) - ln(L)| (Section VI.B).  This test pools the information from multiple traits to get a better

estimate of the actual underlying DI of an individual.  Clearly, in the absence of statistical evidence

for DI heterogeneity among individuals, estimates of the heritability of DI or reports of correlations

between individual DI and fitness, quality, attractiveness or other traits of interest, are not very
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informative (Section VI.B).

VI) ANALYSES OF FA VARIATION:  TESTING FOR DIFFERENCES

VI.A) LEVENE'S TEST FOR HETEROGENEITY OF VARIANCE

Tests for differences in FA at any level, among individuals, traits, or samples, are

fundamentally tests for heterogeneity of variance because FA estimates a variance (Section II.A).

Levene's test (Levene, 1960) is a widely under-appreciated but versatile and easy to use test

for heterogeneity of variance (Van Valen, 1978; Palmer, 1994).  Although not the most powerful

test if distributions are truly normal, more powerful tests are so sensitive to departures from

normality that their use is strongly discouraged (Van Valen, 1978).  Levene's test is, however, the

most powerful test of the two common tests that are least sensitive to departures from normality

(Palmer and Strobeck, 1992).

Levene's test works by transforming signed deviations from the mean into absolute

deviations.  This transforms a symmetrical normal distribution into a highly asymmetrical, truncated

normal distribution that is skewed to the right (Fig. 1).  As a consequence, the mean of the absolute

deviations estimates the SD of the untransformed normal distribution (Section IV.A2).

A significant advantage to Levene's test, compared to other tests for heterogeneity of

variance, is the ease with which it may be applied in a variety of ANOVA designs (Yezerinac et al.,

1992; Palmer, 1994; Crespi and Vanderkist, 1997), thereby avoiding the knotty problem of multiple

single-factor tests.  In addition, by transforming signed deviations to absolute deviations, Levene's

test may therefore simultaneously test for differences between samples or traits, and also for

interactions between samples or traits.  Furthermore, it is conceptually and computationally

straightforward, and may be conducted with any conventional statistical package.

Below, we illustrate three applications of Levene's test to situations commonly encountered

in FA analyses.

(  -  -  -  -  Tables 6 & 7 approximately here  -  -  -  -  )

VI.B) DIFFERENCES AMONG INDIVIDUALS (MULTIPLE TRAITS)

Where asymmetry has been measured for multiple traits, each trait provides an independent

estimate of the underlying DI of an individual (Section II.C).  To take advantage of this, though, the

information from multiple traits must somehow be combined.  In addition, differences in FA due

purely to trait size need to be removed (Sections IV.A3 -IV.A7).

A two-way ANOVA (traits x individuals) on replicate measurements of |ln(R) - ln(L)|

achieves this test nicely (Tables 6, 7).  This is a fully model II ANOVA.  This test may be expanded

easily to include as many traits, individuals, and replicate measurements as desired.  If neither traits
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nor individuals vary much in size, the same analysis could be conducted with |R - L| instead of

|ln(R) - ln(L)|.  The MSerr here is a measure of the average within-group variance among replicate

measurements.

Note that this traits x individuals Levene's test is a more powerful test for differences in DI

among individuals within a sample than tests for leptokurtosis (Section V.B3) for two reasons.

First, for sample sizes typically found in studies of FA, kurtosis is not a very powerful statistic for

detecting departures from normality (Fig. 6).  Second, this Levene's test combines information from

multiple traits, thereby yielding a better estimate of the DI of an individual:  each additional trait

adds a degree of freedom (Section II.C).  Therefore if a traits x individuals Levene's test yields no

significant effect due to individuals, no statistical support exists for variation in DI among

individuals.  Clearly, with no such statistical support, attempts to estimate the heritability of DI, or

correlations between DI and individual fitness or quality, are pointless.

(  -  -  -  -  Tables 8 & 9 approximately here  -  -  -  -  )

VI.C)  DIFFERENCES BETWEEN TWO SAMPLES (MULTIPLE TRAITS)

In the same way that additional traits provide more power when testing for heterogeneity of

DI among individuals (Section VI.B) they also provide more power to a Levene's test when testing

for differences in FA among groups.  If traits differ in size, and FA depends on trait size, then, as

before, a size-corrected measure of FA should be used (Sections IV.A3 -IV.A7).

Tables 8 and 9 illustrate a hypothetical two-way ANOVA testing for differences in FA

between two groups (e.g., sexes) and among multiple traits.  This is a mixed-model ANOVA

(group= fixed, trait= random).  This test may also be expanded easily to include as many traits,

groups, or individuals as desired.  If neither groups nor traits differ much in size, the same analysis

could be conducted with |R - L| instead of |ln(R) - ln(L)|.  See Appendix V for some worked

examples.  The MSerr here is the average within-group variation in FA.

(  -  -  -  -  Tables 10 & 11 approximately here  -  -  -  -  )

VI.D) THREE-WAY AND HIGHER ORDER INTERACTIONS

Levene's test is a particularly attractive test for FA variation because it may be generalized to

any ANOVA design imaginable.  In this manner, information from different traits, different subsets

of individuals (e.g., different sexes), and different treatments of interest (e.g., stress levels) may be

combined into a single analysis.

Tables 10 and 11 illustrate a hypothetical three-way ANOVA.  See Step 10 (Appendix V)

for a fully worked example using published data.  The MSerr here (Table 11) is the average within-

group variation in FA (i.e., among-individual variation).
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VII) CONCLUSIONS

Fluctuating asymmetry analyses are neither conceptually difficult nor computationally

complex.  However, attention to a few fundamental details will greatly improve the quality of FA

studies.  First, choose traits carefully:  examine many traits initially then choose those most

appropriate for the study of FA.  Avoid traits a) that do not exhibit ideal FA (i.e., that exhibit

significant DA or antisymmetry; Section III.A), b) that are vulnerable to plasticity or wear (Section

III.B), c) where ME is a high percentage of FA (Section V.A), and d) where size-dependence of

FA does not exhibit simple allometry (Section IV.A3).  Second, inspect the data carefully via

scatterplots and frequency distributions to ensure outlier measurements or outlier individuals are

not confounding estimates of FA (Appendix V, Steps 1-5).  Third, use multiple traits per individual

wherever possible.  These provide improved power for detecting differences in DI among

individuals (Section VI.B) and among populations (Section VI.C).  Fourth, when testing for

correlations between individual FA and some factor of interest, or when estimating the heritability of

FA, confirm that FA varies significantly among individuals first (Sections V.A4, VI.B).  Fourth, use

a single multi-way analysis rather than several simpler analyses to avoid the problems that arise

when conducting multiple statistical tests (Section VI.D).  Finally, where alternate tests of the same

hypothesis make different assumptions, and where these assumptions are hard to validate, multiple

tests are advised.  If different tests yield the same or similar results, then clearly the results are

robust even if assumptions are violated.

As is so often the case, these rules are very similar to those for any well-conducted study.  A

wider adherence to them would significantly improve studies of FA variation.
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Table 1.  Conventional FA indexes for a sample of individuals based on one trait per individual,

standardized so that numerical values of related indexes are directly comparable (modified from

Table 1 of Palmer, 1994).

Measure of asymmetry for a given trait of individual i

Trait-size
correction

Unsigned asymmetry
|Ri-Li|

Signed asymmetry†
(Ri-Li)

Ratio between sides
ln(Ri/Li)§

none FA1: mean |R-L| FA4a: 0.798 √var(R-L)

FA5a: 0.798 √[∑(R-L)2/N]

by
individual

|R-L|

(R+L)/2[ ]FA2: mean
(R-L)

(R+L)/2
varFA6a: 0.798 [ ] FA8a: mean |ln(R/L)|

by
sample

mean |R-L|

mean[(R+L)/2]
FA3:

0.798 √var (R-L)

mean[(R+L)/2]
FA7a:

Other indexes for single traits:
FA9:  1 - r2 of correlation between R and L (i.e., % bilateral variation not due to positive covariation);

a potentially misleading index (Angus, 1982; Palmer, 1994).

FA10a:  0.798 √ 2σ2
i, where σ2

i= (MSsj - MSm)/M = the estimated underlying DI variance of a

given side of individual i, and where MSsj = sides x individuals interaction MS, MSm=

measurement error MS, M= number of replicate measurements per side, from a sides x

individuals ANOVA on untransformed replicate measurements of R and L (see Table 3 of

Palmer & Strobeck, 1986).  When the number of replicate measurements per side is two, this

simplifies to:  0.798 √(MSsj - MSm).  Describes the magnitude of total non-directional

asymmetry for a trait after ME has been partitioned out.  For traits exhibiting ideal FA (Fig. 1a), it

may be compared directly with FA1 to view the decline in FA1 after removing ME.

FA10b:  0.798 √ 2σ2
i, where σ2

i is computed as for FA10a, but the data analysed are log

transformed replicate measurements ln(R) and ln(L).  Describes the magnitude of total non-

directional asymmetry as a proportion of the trait mean for a trait after ME has been partitioned

out.  For traits exhibiting ideal FA (Fig. 1a), it may be compared directly with FA2 to view the

decline in FA2 after removing ME.  Only recommended where size variation is small.

†  See Section IV.A2 for an explanation of how variances can be transformed into an estimate of

average deviation.

§  See Section IV.A7 for an explanation why FA8a and FA2 are equivalent to three decimal places.
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Table 2.  Indexes for individual FA based on multiple traits per individual.

Previous indexes (Palmer, 1994).

FA11:  asymmetry in an individual (Ai)= ∑|Ri-Li| for all traits of an individual; the index for a

sample is ∑Ai /N where N= number of individuals in the sample.

CONS:  only meaningful where mean (Ai) is comparable for all traits (Palmer, 1994).

FA12:  a non-parametric index; asymmetry in an individual (Ai)= total number of asymmetrical traits

in an individual, independent of how large the deviation is between sides; the index for a sample

is∑Ai /N where N= number of individuals in the sample.

CONS:  only meaningful for meristic traits (Palmer, 1994).

FA13:  Generalized index of overall FA (GFA); a multivariate measure of average deviation from

symmetry for multiple metrical traits (see Leung et al., 2000, for detailed explanation).

CONS:  complex and difficult to apply.

New indexes

FA14:  asymmetry in individual i is ∑[|FAij| / |FA  |j ] / Nt, where FAij is the deviation from

symmetry of trait j in individual i, and |FA  |j  is the average absolute deviation from symmetry of

trait j for the entire sample (index CFA 2 of Leung et al., 2000).
PROS:  removes size-dependent differences in FA among traits; removes among-trait differences

in underlying DI; more powerful than FA15 where leptokurtosis is minor.

CONS:  potentially yields biased values if ME is constant but trait size varies (e.g., see Fig. 2c);

not comparable quantitatively to other studies, so it is more useful as a test of significance

than for describing FA differences; less powerful than FA15 in the presence of moderate

leptokurtosis (Leung et al., 2000);

FA15:  a non-parametric index; asymmetry in individual i is ∑RFAij, where RFAij is the rank value

of |R - L| for trait j of individual i and the |R - L| values are ranked separately for each trait in the

sample (index CFA 3 of Leung et al., 2000).

PROS:  removes size-dependent differences in FA among traits; removes among-trait differences

in underlying DI; more powerful than FA15 in the presence of moderate leptokurtosis (Leung

et al., 2000).

CONS: potentially yields biased values if ME is constant but trait size varies (e.g., see Fig. 2c);

not comparable quantitatively among studies, so it is more useful for significance testing than
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for describing FA differences; less powerful than FA14 where leptokurtosis is minor.

FA16:  MANOVA on |FAij| (index CFA 6 of Leung et al., 2000)

PROS:  not vulnerable to departures from normality.

CONS:  consistently lower power than related multivariate indexes (Leung et al., 2000).

FA17:  ∑|ln(Rj/Lj)| / T = ∑|ln(Rj) - ln(Lj)| / T, where Rj and Lj are measurements of the R and L

side for trait j and T is the number of traits per individual.

PROS:  expresses the average proportional deviation from symmetry of all traits of an individual

combined; directly comparable with indexes based on single traits (FA2 and FA8a, Table 1).

CONS:  yields biased values if ME is constant but trait size varies (e.g., see Fig. 2c).

FA18:  landmark based index; √∑(XYiR - XYiL)2 for i= 1 to k, the total number of landmarks per

specimen, of Procrustes aligned landmarks from structures on the right (XYiR) and left (XYiL)

sides of an individual (see Appendix of Klingenberg and McIntyre, 1998).

PROS & CONS:  see Section IV.B4.
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Table 3.  Measurement error (ME) and repeatability in studies of FA.†

a) true underlying error in measurement

2
ME = variance of repeat measurements of a single side due to ME.  In the absence of DI (i.e.,

var(R - L) is due solely to ME) var(R - L) = 2 σ2
ME / n (see Eq. III.7, Appendix III).

b) descriptors of ME that include units of measurement

ME1:  average difference between pairs of measurements on one side, ME1 = ∑|M1 - M2| / N.

PROS:  ME1 may be compared directly to FA1 (Table 1) when FA1 is computed using two

measurements per side (i.e., ME1 = FA1 in the absence of DI; see Eq. III.8, Appendix III);

provides an independent estimate of ME2 (ME2 = ME1 / 0.798; see Section IV.A2).

CONS:  limited to pairs of repeat measurements.

ME2:  SD of repeated measurements, ME2 = √[∑var(M1, M2, M3, … Mn) / N] = √MSm where

MSm is the error MS from a sides x individuals ANOVA (Palmer, 1994).

PROS:  estimates the true underlying ME (σ2
ME); not limited to two measurements per trait; may

be compared directly to FA1:  in the absence of DI FA1 = (0.798 √ (2 / n)) * ME2 = 0.798

√((2 / n) * MSm) (see Eq. III.8, Appendix III).

CONS:  none.

c) descriptor of ME that is independent of units of measurement

ME3:  %ME = 100*ME1 / FA1 = 100*MSm / MSinteraction where FA1 is measured as in Table 1.

PROS:  easy to compute; easy to interpret.

CONS:  cannot estimate true ME without knowledge of FA1 or MSinteraction.

d) repeatability of FA, independent of units of measurement

     MSindividuals - MSerror
ME4:  repeatability, rI =

MSindividuals + (n - 1) MSerror

where MSindividuals is the among- and MSerror is the within-individual MS, from a one-way

ANOVA (repeat measurements of R-L nested within individuals, Zar, 1999, p. 405).

PROS:  a dimensionless number that estimates the true FA variation as a proportion of the total

between-sides variation including ME; easy to interpret (ranges from -1 to +1).

CONS:  requires another analysis in addition to the standard test of the significance of FA relative

to ME; cannot be used to estimate ME with units (e.g., ME1) without knowing MSindividuals.
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     MSinteraction - MSm
ME5:  repeatability,   rA =

MSinteraction + (n - 1) MSm

PROS:  a dimensionless number that estimates the true FA variation as a proportion of the total

between-sides variation including ME; easy to interpret (ranges from -1 to +1); readily

computed from MS obtained in the standard test of significance of FA relative to ME (Section

V.A5, Palmer and Strobeck, 1986).

CONS:  cannot be used to estimate ME with units (e.g., ME1) without knowing MSindividuals.

e) repeatability of DI among individuals ('hypothetical repeatability' of Van Dongen, 1998)

R:  hypothetical repeatability = 1-(((VFA + VME) x (π-2)/π)/V|FA|), where VFA= var(R-L) = FA4,

V|FA|= var|R-L|, and VME= (ME2)2 = MSm.

PROS:  may potentially be used to correct for the downward bias of correlations with FA1 due to

sampling error and measurement error (Whitlock, 1996).

CONS:  derivation potentially flawed (Section V.A4c); the standard error of R is unknown so its

ability to reveal true variation in DI among individuals is unclear.

† M1, M2, … Mn= repeat measurements on the same side in the same individual, n= number of repeat

measurements, N= total number of objects measured (normally twice the number individuals

since one object is measured on each side), MS= mean squares.  MSinteraction = sides x

individuals interaction MS and MSm= the error MS from the standard sides x individuals

ANOVA used to test the significance of FA relative to ME (Section V.A5, Palmer and Strobeck,

1986).
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Table 4.  Underlying causes of departures from normality in studies of FA.

a) causes of skew

i) one or more individuals were damaged on the same side, yielding extreme values of (R-L).

ii) one or more individuals exhibit extreme values of (R-L) in the same direction because of

measurement or recording errors.

iii) a mixture of individuals where some exhibit ideal FA (Fig. 1a) and others exhibit weak DA.

iv) a mixture of individuals where some exhibit DA and others exhibit antisymmetry (Palmer and

Strobeck, 1992).

v) bimodal variation in R - L where the two modes are of different height; likely due to a mixture of

antisymmetry and DA.

b) causes of leptokurtosis

i) outlier measurements or other causes of heterogeneity of ME (Section V.A and Steps 1 and 2,

Appendix V).

ii) outlier values of (R-L) for a few individuals, due to wear, injury or some type of error (Section V.A

and Steps 3-5, Appendix V).

iii) a mixture of individuals where some were measured with one level of ME and others were

measured with another level of ME (e.g., due to changes in ME with experience, to session-to-

session differences in ME, or to differences in ME among measurers).

iv) a mixture of individuals where some exhibit ideal FA (Fig. 1a) and others exhibit antisymmetry

(Palmer and Strobeck, 1992).

v) heterogeneity of (R-L) variation within a sample due to size-dependence of (R-L) (Section

IV.A3d).

vi) heterogeneity of (R-L) variation within a sample due to true variation in underlying DI among

individuals (Section IV.A3d).

c) causes of platykurtosis

i) antisymmetry, consistent deviations of (R - L) from zero, but the side that is larger varies at random

(Van Valen, 1962).



Rev. 5/13/01 Palmer & Strobeck  -54-

Table 5.  Critical values of the kurtosis test statistic for deviations of frequency distributions from

normality in the direction of platykurtosis (broad-peaked or bimodal) and leptokurtosis (narrow-

peaked and long-tailed).  Significant platykurtosis may signal the presence of antisymmetry.

             Critical values for Eq. 6†                       Critical values for Eq. 7§           
    Platykurtosis         Leptokurtosis        Platykurtosis         Leptokurtosis    

Sample Size 5% level 1% level 5% level 1% level 5% level 1% level 5% level 1% level

7 -1.59 -1.75 0.55 1.23 -1.997 -2.395 3.109 4.710
8 -1.54 -1.69 0.70 1.53 -1.814 -2.132 2.899 4.617
9 -1.47 -1.65 0.86 1.82 -1.674 -2.030 2.829 4.639
10 -1.44a -1.61a 0.95a 2.00a -1.575 -1.881 2.624 4.480
12 -1.36 -1.54 1.05 2.20 -1.442 -1.720 2.416 4.248
15 -1.28 -1.45 1.13 2.30 -1.284 -1.563 2.152 3.973
20 -1.18b -1.36b 1.18b 2.38b -1.161 -1.403 1.869 3.471
25 -1.09 -1.28 1.15 2.29 -1.052 -1.288 1.735 3.196
30 -1.02 -1.21 1.12 2.20 -0.992 -1.220 1.549 2.862
35 -0.97 -1.16 1.09 2.12 -0.936 -1.147 1.440 2.651
40 -0.93 -1.11 1.06 2.04 -0.886 -1.098 1.333 2.512
45 -0.89 -1.07 1.02 1.96 -0.848 -1.049 1.301 2.313
50 -0.85 -1.05 1.00 1.88 -0.817 -1.016 1.217 2.268
60 -0.79 -0.97 0.94 1.75 -0.767 -0.954 1.132 2.005
70 -0.75 -0.93 0.89 1.64 -0.717 -0.901 1.029 1.804
80 -0.71 -0.88 0.85 1.54 -0.682 -0.870 0.983 1.744
90 -0.68 -0.84 0.81 1.46 -0.658 -0.821 0.916 1.611
100 -0.65 -0.82 0.78 1.39 -0.631 -0.803 0.869 1.510
120 -0.61 -0.78 0.75 1.26 -0.583 -0.742 0.791 1.386
130 -0.59 -0.74 0.70 1.21
140 -0.57 -0.72 0.67 1.17 -0.554 -0.707 0.748 1.262
150 -0.55 -0.71 0.65 1.13
160 -0.54 -0.68 0.63 1.09 -0.521 -0.674 0.692 1.178
180 -0.51 -0.65 0.60 1.03 -0.501 -0.640 0.643 1.102
200 -0.49 -0.63 0.57 0.98 -0.478 -0.620 0.617 1.020
250 -0.45 -0.58 0.52 0.87 0.560 0.909
300 -0.41 -0.54 0.47 0.79 0.510 0.819
400 -0.36 -0.48 0.41 0.67 0.439 0.694
500 -0.33 -0.43 0.37 0.60 0.391 0.610

† Critical values for sample sizes < 200 for Eq. 6 were obtained from D'Agostino (1986, his Table
9.5), and for sample sizes > 200 were obtained from Pearson and Hartley (1966, Table 34).  All
were obtained by subtracting 3 from the original values, to make them comparable to the skew
statistic (see Section V.B2c).

a Confirmed to be within 1% using 50,000 replications.
b Confirmed to be within 1% using 20,000 replications.
§ Critical values obtained by simulation.  Kurtosis was computed using Eq. 7 on 30,000

replicates of normal(0,1).  For sample sizes > 200 critical values were obtained
from Table B.23 of Zar (1999), which are only valid for leptokurtosis.
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Table 6.  The structure of a hypothetical Levene's test for differences in FA among individuals and

traits.†

Trait 1 Trait 2        … Trait k

Indiv. 1 |ln(R1) - ln(L1)|
|ln(R2) - ln(L2)|
|ln(Ri) - ln(Li)|

|ln(R1) - ln(L1)|
|ln(R2) - ln(L2)|
|ln(Ri) - ln(Li)|

etc.

Indiv. 2

…

|ln(R1) - ln(L1)|
|ln(R2) - ln(L2)|
|ln(Ri) - ln(Li)|

|ln(R1) - ln(L1)|
|ln(R2) - ln(L2)|
|ln(Ri) - ln(Li)|

Indiv. j etc.

† R1, R2, and Ri  are replicate measurements of the right side and L1, L2, and Li are replicate

measurements of the left side of a single trait in an individual. i= total number of replicate

measurements, j= total number of individuals, k= total number of traits.

Table 7.  Outcome and interpretation of the hypothetical Levene's test for differences in FA among

individuals and traits.  This is a fully model II ANOVA, since both traits and individuals are random

effects.  If specific traits are selected a priori to test for different levels of DI, then traits may be

considered a fixed effect, but the expected MS and therefore tests of significance change (Sokal and

Rohlf, 1995; p. 333-334).†

Source
of variation

Observed
MS

Expected
MS

Denominator
MS for F test

Interpretation if significant

Individuals 
(I, random)

MSI σ2
e + n σ2

IT + n σ2
I

MSIT FArel varies among individuals

Traits (T, random) MST σ2
e + n σ2

IT + n σ2
T

MSIT FArel varies among traits

IxT Interaction MSIT σ2
e + n σ2

IT
MSerr Difference in FArel among

traits depends on individual

Error (due to
measurements)

MSerr σ2
e

†  Expected MS from Sokal (1995).  n= number of replicate measurements.  σ2
e= measurement

error variance, σ2
IT= variance component due to interaction, σ2 

T= variance component due to

traits, σ2
I= variance component due to individuals, FArel = relative FA = FA as a proportion of

trait size (FA8a of Table 1).
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Table 8.  The structure of a hypothetical Levene's test for differences in FA among traits and

between two groups (e.g., sex), based on multiple individuals per group.†

Trait 1 Trait 2      … Trait k

Male |ln(R1m) - ln(L1m)|
|ln(R2m) - ln(L2m)|
|ln(R3m) - ln(L3m)|

…
|ln(Rim) - ln(Lim)|

|ln(R1m) - ln(L1m)|
|ln(R2m) - ln(L2m)|
|ln(R3m) - ln(L3m)|

…
|ln(Rim) - ln(Lim)|

etc.

Female |ln(R1f) - ln(L1f)|
|ln(R2f) - ln(L2f)|
|ln(R3f) - ln(L3f)|…
|ln(Rif) - ln(Lif)|

|ln(R1f) - ln(L1f)|
|ln(R2f) - ln(L2f)|
|ln(R3f) - ln(L3f)|…
|ln(Rif) - ln(Lif)|

† R1= average of all replicate measurements of the right side for individual 1, L1= average of all
replicate measurements of the left side for individual 1, etc. i= total number of individuals, k=
total number of traits.
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Table 9.  Outcome and interpretation of the hypothetical two-way Levene's test for differences in

FA between sexes and among traits.  This is a mixed-model ANOVA, since sex is a fixed effect and

traits is a random effect.  If specific traits are selected a priori to test for different levels of DI, then

traits may be considered a fixed effect, but the expected MS and therefore tests of significance

change (Sokal and Rohlf, 1995; p. 333-334).†

Source
of variation

Observed
MS

Expected
MS

Denominator
MS for F test

Interpretation if significant

Sex (S, fixed) MSS σ2
e + n σ2

ST + S* MSST FArel differs between sexes

Traits (T, random) MST σ2
e               + na σ2

T
MSerr FArel varies among traits

SxT Interaction MSST σ2
e + n σ2

ST
MSerr Difference in FArel between

sexes depends on trait

Error (due to
individuals)

MSerr σ2
e

†  Expected MS from Sokal and Rohlf (1995), where σ2
e= residual variation among individuals,

σ2
ST= variance component due to interaction, σ2

T= variance component due to traits, S*=

variance component due to sex, n= number of individuals per sex, a= number of sexes.  See
footnote to Table 7 for remaining terms.
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Table 10.  The structure of a hypothetical Levene's test for differences in FA among traits, between

two groups (e.g., sex), and between two habitats (e.g., high stress, low stress), based on multiple

individuals per group.†

Trait 1 Trait 2  …   Trait k

High stress Low stress High stress Low stress

Male |ln(R1m) - ln(L1m)|
|ln(R2m) - ln(L2m)|
|ln(R3m) - ln(L3m)|

…
|ln(Rim) - ln(Lim)|

|ln(R1m) -
ln(L1m)|

|ln(R2m) -
ln(L2m)|

|ln(R3m) -
ln(L3m)|

…
|ln(Rim) - ln(Lim)|

|ln(R1m) - ln(L1m)|
|ln(R2m) - ln(L2m)|
|ln(R3m) - ln(L3m)|

…
|ln(Rim) - ln(Lim)|

|ln(R1m) - ln(L1m)|
|ln(R2m) - ln(L2m)|
|ln(R3m) - ln(L3m)|

…
|ln(Rim) - ln(Lim)|

etc.

Female |ln(R1f) - ln(L1f)|
|ln(R2f) - ln(L2f)|
|ln(R3f) - ln(L3f)|…
|ln(Rjf) - ln(Ljf)|

|ln(R1f) - ln(L1f)|
|ln(R2f) - ln(L2f)|
|ln(R3f) - ln(L3f)|…
|ln(Rjf) - ln(Ljf)|

|ln(R1f) - ln(L1f)|
|ln(R2f) - ln(L2f)|
|ln(R3f) - ln(L3f)|…
|ln(Rjf) - ln(Ljf)|

|ln(R1f) - ln(L1f)|
|ln(R2f) - ln(L2f)|
|ln(R3f) - ln(L3f)|…
|ln(Rjf) - ln(Ljf)|

† R1m= average of all replicate measurements of the right side for male individual 1, L1m= average
of all replicate measurements of the left side for male individual 1, R1f= average of all replicate
measurements of the right side for female individual 1, L1f= average of all replicate
measurements of the left side for female individual 1, etc. i= total number of males; j= total
number of females, k= total number of traits.



Rev. 5/13/01 Palmer & Strobeck  -59-

Table 11.  Outcome and interpretation of the hypothetical three-way Levene's test for differences in

FA between sexes (male, female), between habitats (high stress, low stress), and among traits.  This

is a mixed model ANOVA, since sex and habitat are fixed effects and traits is a random effect.  If

specific traits are expected to show different levels of DI, then traits may be considered a fixed

effect also, but see Sokal & Rohlf (1995; p. 376-377) for expected MS and proper tests.†

Source
of variation

Observed
MS

Expected
MS

Denominator
MS for F test

Interpretation if significant

Sex (S, fixed) MSS σ2
e + nb σ2

ST + S* MSST FArel differs between sexes

Habitat (H, fixed) MSH σ2
e + na σ2

HT + H* MSHT FArel differs between habitats

Traits (T, random) MST σ2
e + nab σ2

T
MSerr FArel varies among traits

SxH Interaction MSSH σ2
e + n σ2

SHT +
SH*

MSSHT FArel difference between sexes
depends on habitat

SxT Interaction MSST σ2
e + nb σ2

ST
MSerr FArel difference between sexes

depends on trait

HxT Interaction MSHT σ2
e + na σ2

HT
MSerr FArel difference between habitats

depends on trait

SxHxT
     Interaction

MSSHT σ2
e + n σ2

SHT
MSerr One 2-way interaction depends on

the state off the third factor

Error (due to
individuals)

MSerr σ2
e

†  Expected MS from Sokal and Rohlf (1995), where σ2
e= residual variation among individuals,

S*, H*, and SH* are the variance components due to Sex and Habitat, and Sex x Habitat

interaction (including their df), σ2
ST, σ2

HT, and σ2
SHT are the variance components of the two-

and three-way interactions, n= number of individuals per sex, a= number of sexes (2), b=
number of traits, and FArel = relative FA = FA as a proportion of trait size (FA8a of Table 1).
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Figure 1.  Hypothetical frequency distributions of a) signed (R - L) and b) unsigned |R - L|

departures from symmetry for a trait that exhibits ideal FA (mean zero, normal).  SD= standard

deviation.
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Figure 2.  Simulated variation illustrating the dependence of asymmetry on trait size, (R + L)/2, for

three cases:  a) unscaled asymmetry with ME included (Spearman ρ= 0.228, P= 0.0013), b) size-

scaled asymmetry, ME not included (Spearman ρ= –0.078, P= 0.27), c) size-scaled asymmetry, ME

included (Spearman ρ= –0.174, P= 0.014).  Solid lines indicate least-square linear regressions.  In

this simulation, both the underlying DI variance and the variance due to ME were set to 2% of trait

size.  Variation for the right side was simulated as Ri = S' + Si + DIi + MEi  or  Ri = S' + Si + DIi

depending whether or not ME was included (a) or not (b):  trait size variation (Si) = Ui * S', where

Ui = UniformRandom(-0.5, 0.5) and S' = 10; size-dependent developmental instability (DIi)= 0.02

* Si * d i, where di = RandomNormal(0,1); constant measurement error (MEi)= 0.02 * S' * ei,

where ei = RandomNormal(0, 1).  Variation for the left side was also simulated this way, but with

independent draws of DIi and MEi.  Solid symbols in (c) indicate the expected |R - L| due solely to

ME if only one measurement was taken per side (ME1' = 0.798 σME  √2 = 0.798 * 0.2 √ 2 =

0.226; see Appendix III.a for derivation) divided by trait size, (Ri + L i 

)/2.
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Figure 3.  (a,b) Frequency distributions of the ratio (R/L) and of log (R/L) obtained from computer

simulations [both right (R) and left (L) were normally distributed random deviates, mean= 10, SD=

2.5, N= 500].  (c) Effect of increasing asymmetry variation on the skew of ratios (for each point,

N= 500, both R and L were normally distributed random deviates, mean= 10, SD= 0.1, 0.5, 1.0, 2.5;

asymmetry CV refers to 100 (SDR-L/trait mean); 10 simulations were conducted for each SD; solid

lines indicate least-squares first-order polynomial regressions; small dashed lines indicate 5%

significance levels for skew based on a sample size of N= 500.
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Figure 4.  Effect of measurement error (ME) on the strength of the correlation among individuals

in a single sample between |R-L| in one trait and |R-L| of a second trait in the same individual.

Each population consisted of a mixture of individuals exhibiting three different levels of underlying

DI variance:  expected var(R - L) = DI = 1/x, 1, x.  Two populations were simulated, as were two

different distributions of DI variation:  ( ) x= 4, proportions of all three DI levels equal, ( ) x= 2,

proportions of all three DI levels equal, ( ) x= 4, proportions of DI levels 1:2:1, ( ) x= 2,

proportions of DI levels 1:2:1.  The ME variance var(M1 - M2) is expressed as a percent of the

median DI variance (i.e., a value of 100 means the variance of replicate measurements equals the

median DI variance between sides).  The simulations were conducted by S. Van Dongen using the

model described in Van Dongen (1998) (figure modified from Palmer 2000).
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Figure 5.  Frequency distributions of the kurtosis statistic (computed from Eq. 6) as a function of

sample size.  For each trial kurtosis was computed for a distribution of random normal deviates

(mean= 0, SD= 1).
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Figure 6.  Power curves for the kurtosis statistic as bimodality increases:  a) α= 5% significance,

b) α= 1% significance.  Kurtosis was computed using Eq. 6.  Critical values for kurtosis were

obtained from Table 5.  Antisymmetry was simulated by varying the value for D (the distance

between one peak and zero, middle panel of frequency distributions at top).  S (the standard

deviation of the variation about each peak, middle panel of frequency distributions at top), was held

constant at 1.0.  Frequency distributions at the top illustrate a single sample of N= 500 simulated

observations.
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APPENDIX I
Relations among FA indexes that scale out trait size

Several indexes express subtle asymmetry as a proportion of trait size in an individual

(Palmer and Strobeck, 1986):

d1 = (R - L) / ((R + L) / 2), (I.1)

d2 = |d1| = |R - L| / ((R + L) / 2). (I.2)

d3 = ln (R / L) = ln (R) - ln (L). (I.3)

d4 = |d3| = |ln (R / L)| = |ln (R) - ln (L)| (I.4)

d1 is used to compute index FA6, d2 is used to compute index FA2, d3 is used to compute index

FA8, and d4 is used to compute index FA8a (Palmer and Strobeck, 1986, and Table 1).

The relations between d1 and d2, and between d3 and d4, are obvious.  The relations

between d1 and d3, and between d2 and d4, are not, but these indexes can be shown to be

equivalent, for all practical purposes, via a Taylor expansion series approximation.

First, consider an approximation to the natural log of one particular ratio:

ln
1+ x

1− x
 
 
  

 
 = 2 x +

x3

3
+

x5

5
+ .....

 

 
 

 

 
 (I.5)

This ratio can be shown to be equivalent to ln
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  as follows.  First,
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where x = R − L

R + L
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Second, substituting ln
R

L
 
 
  

 
  for ln

1+ x

1− x
 
 
  

 
 , and 

R − L

R + L
 for x, in equation (I.5) yields:
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+ ...

 

 

 
 
 
 

 

 

 
 
 
 

=
R − L

R + L( )
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+

R − L
R + L( )

2

 

 

 
 

 

 

 
 

3

12
+ .... (I.7)

Substituting from equation (I.1 and I.3) yields:

d3 = d1 + d1
3 / 12 + d1

5 / 80 + … (I.8)

Significantly, for studies of FA variation, the second and all subsequent terms in this series can be

ignored because d1 is almost always less than 0.1 and typically closer to 0.01 (Palmer, 1996).  So

even if deviations from symmetry approach 10% of trait size (d1 = 0.1), the second term in this

series would be less than 0.0001 and all higher order terms would be even smaller.  Therefore, to at

least three decimal places, d1 = d3 and d2 = d4.
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APPENDIX II
Expected size-dependence of ME for size-scaled FA indexes

If measurement error (ME) is constant, but trait size varies, size-scaled measures of FA

(e.g., FA2, FA3, FA6a, FA7a, FA8a) will yield a negative association between apparent FA and trait

size (Section IV.A6).  The expected slope of FA2 vs trait size, due simply to ME where only a

single measurement is taken per side, can be predicted as follows.

Definitions

µ  = overall mean trait size, to which ME is proportional.

µ+x = size of a trait in an individual, to which DI is proportional (x refers to the deviation of a
trait in an individual from the population mean.

bµ  = standard deviation of repeat measurements of one side (b expresses ME as a proportion
of overall mean trait size, µ)

a(µ+x) = standard deviation of one side due to DI (a expresses DI as a proportion of
individual trait size, µ + x, therefore FA= SD(R - L) = a(µ + x) √2 for one
measurement per side; see Appendix III.a for derivation),

k = 0.798 = √(2 / π) = the constant to convert SD(R - L) to mean|R - L| (Kendall and Stuart,
1951).

Derivation

FA2 =
R − L

(R + L)/2
=

k 2a2 ( + x)2 + 2b2 2

+ x
= k 2a2 + 2b2

+ x

 
 
  

 

2

(II.1)
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Evaluated at x=0 (i.e., at the overall mean trait size µ), the expected slope of FA2 versus trait size is

d
R − L

(R + L) /2
dx

x =0

=
−2kb2

u 2a2 + 2b2
=

−2kb2u2

u2 2a2u2 + 2b2u2
(II.3)

If DI is absent (i.e., the difference between sides is due exclusively to ME) then Eq. II.3 simplifies to

d
R − L

(R + L) / 2
dx

x =0

=
−k 2b2u2

u2 =
−k 2bu

u2 =
− FA1

u2 (II.4)

where FA1 is defined as in Table 1.  For n measurements per side (see derivation in Appendix III),

the expected slope of FA2 vs trait size at x = 0 is

d
R − L

(R + L) / 2
dx

x =0

=
−k (2 / n)bu

u2 =
−FA1

u2
(II.5)

where FA1 is defined as in Table 1 and the difference between sides is due exclusively to ME.

Eq. II.4 may also obtained as follows.  The derivative

d(Cxn )

dx
= nCxn−1

therefore

d(C x)

dx
=

d(Cx −1)

dx
= −Cx−2 = −C x2 (II.6)

where C is any constant.  For studies of FA, C would refer to FA1 when DI variation was absent

(see derivation in Appendix III) and x to trait size (R + L) / 2.
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APPENDIX III
Expected contribution of ME to FA

Measurement error (ME) inflates all descriptors of FA except those that partition out ME

(Sections IV.A1, V.A).  Discussions of ME can be quite confusing if underlying error variances

such as σ2
ME below are not distinguished from numerical descriptors of ME, like ME1 (Table 3).

Therefore when ME is discussed in general, it refers to σ2
ME.  Specific descriptors of ME are

referred to using the convention in Table 3.

Definitions

µ = overall mean trait size.

εR, εL = deviations of the size of the right and left side respectively from the mean trait size µ

due to DI [from a normal distribution (0, σ2
I)]; note that all variation in trait size in the

derivations below is due solely to DI (i.e., underlying body size variation in absent).

δR1, δR2, δL1, δL2 = deviations of measurements 1 and 2 from the right and left sides (µ + εR,

µ + εL, respectively) [from a normal distribution (0, σ2
ME)].

σ2
I = variance of trait size on one side among individuals due to DI.

σ2
ME = variance of replicate measurements of a single side due to ME.

M1R, M2R, M1L, M2L, etc. = actual first, second, etc. measurements of the right and left sides.

Preliminaries

First, recall the relationships between sums and differences of variances:

var(X + Y) = var(X) + var(Y) + 2 covar(XY) (III.1)

var(X - Y) = var(X) + var(Y) - 2 covar(XY)

Where the covariance is zero and the expected means are identical — as would be expected between

independent replicate measurements or between sides that differ only due to DI — the term 2

covar(XY) disappears yielding:

var(X + Y) = var(X - Y) = var(X) + var(Y) (III.2)

Second, recall that:

var(aX) = a2var(X) and therefore var(X / a) = var(X) / a2 (III.3)
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Derivations

The amount that ME inflates FA may be computed as follows.

a) For one measurement per side:

(Ri - Li) = M1R - M1L

= (µ + εR + δR1 ) - (µ + εL + δL1)

= (εR - εL) + (δR1 - δL1)

Because the DI variances and the ME variances are the same for the right and left sides:

var(R - L) = (σ2
I + σ2

I) + (σ2
ME + σ2

ME)

= 2σ2
I + 2σ2

ME (III.4)

In the absence of DI (i.e., σ2
I = 0 so any difference between sides is due solely to ME), this

simplifies to:

var(R - L) = 2σ2
ME

SD(R - L) = √2σME

FA1 = mean |R - L| = 0.798 √2 σME = 2σME / √π (III.5)

b) For multiple (n) measurement per side:

(Ri - Li) = (M1R + M2R + … + MnR) / n - (M1L + M2L + … + MnL) / n

= (µ + εR + δR1 + µ + εR + δR2 + … + µ + εR + δRn) / n

       - (µ + εL + δL1 + µ + εL + δL2 + … + µ + εL + δLn) / n

= (εR - εL) + (δR1 + δR2 + … + δRn + δL1 + δL2 + … + δLn) / n

Because the DI variances and the ME variances are the same for the right and left sides:

var(R - L)= (σ2
I + σ2

I) + 2 (nσ2
ME) / n2

= 2 σ2
I + (2n / n2) σ2

ME

= 2 (σ2
I + σ2

ME / n) (III.6)
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In the absence of DI (i.e., σ2
I = 0 so any difference between sides is due solely to ME), this

simplifies to:

var(R - L) = 2 σ2
ME / n (III.7)

SD(R - L) = σ      √ (2 / n)ME

FA1 = mean |R - L| = 0.798 σ ME √ (2 / n)        = 2 σME / √ (nπ ) (III.8)

Equation III.6 has the desirable property that as n -> ∞ var(R - L) -> 2 σ2
I, the observable FA due

exclusively to DI.  Similarly, Equation III.7 has the desirable property that as n -> ∞ FA1 -> 0.
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APPENDIX IV
Relation between FA2 and FA3

FA2 and FA3 both describe FA as a proportion of trait size (Table 1).  In FA2, trait

asymmetry in each individual is standardized by the trait size of that individual.  In FA3, the average

trait asymmetry of the entire sample is standardized by the average trait size of the entire sample.

How different are these indices?

Simulation

Trait size and FA variation were simulated as follows:

µ  = overall mean trait size (set to a constant of 10).

xi= trait size variation (UniformRandom (-s,s), where s was 0.1, 0.3, 0.5, 0.7, or 0.9).

Ri, Li = variation due to DI [RandomNormal(0, DI), where DI was 0.01, 0.02, 0.05; because

µ= 10, this means the SD of DI was 1%, 2% or 5% of the overall trait mean].

When DI was independent of trait size, right and left were simulated as:

Ri= µ  + µxi + µ Ri and Li= µ  + µxi + µ Li

When DI was proportional to trait size, right and left were simulated as:

Ri= µ  + µxi + µxi Ri and Li= µ  + µxi + µxi Li

FA2 and FA3 were computed as in Table 1.  The CV of trait size was computed as SD[(Ri+Li)/2]

/ mean [(Ri+Li)/2], but note that trait size exhibited a uniform distribution.  For each trial, N=

10,000.

Results

When DI was proportional to trait size, FA2 and FA3 yielded the same values, regardless of

the size range or the level of variation due to DI (Figure IV.1).  However, when DI was constant,

FA3 underestimated FA2.  The amount of this underestimate depended on the trait size range, but

not on the level of variation due to DI.  If trait size CV was < 20%, FA3 deviated from FA2 by less
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than 5%.  However, for a trait size CV of 40%, FA3 deviated from FA2 by nearly 20%, and this

deviation became more pronounced with increasing trait size CV.

DI Constant (DI= 0.01)
DI Constant (DI= 0.02)
DI Constant (DI= 0.05)

DI ∝size (DI= 0.01)
DI ∝size (DI= 0.02)
DI ∝size (DI= 0.05)

CV of trait size

F
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A
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Figure IV.1.  The ratio of two size-scaled FA indices (FA3/FA2) as a function of trait size variation

for three levels of DI (SD of DI as a proportion of the overall trait mean).  Each point was obtained

from a simulated sample size of 10,000.
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APPENDIX V
Fluctuating-asymmetry analysis:  A step-by-step example

This appendix and its associated data files are available as web supplements from:

http://www.oup-usa.org/sc/0195143450

and

http://www.biology.ualberta.ca/palmer.hp/DataFiles.htm.




