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■ Abstract Selective reporting—e.g., the preferential publication of results that are
statistically significant, or consistent with theory or expectation—presents a challenge
to meta-analysis and seriously undermines the quest for generalizations. Funnel graphs
(scatterplots of effect size vs. sample size) help reveal the extent of selective reporting.
They also allow the strength of biological effects to be judged easily, and they reaffirm
the value of graphical presentations of data over statistical summaries.

Funnel graphs of published results, including: (a) sex-ratio variation in birds,
(b) field estimates of heritabilities, and (c) relations between fluctuating asymme-
try and individual attractiveness or fitness, suggest selective reporting is widespread
and raise doubts about the true magnitude of these phenomena. Quasireplication—the
“replication” of previous studies using different species or systems—has almost com-
pletely supplanted replicative research in ecology and evolution. Without incentives
for formal replicative studies, which could come from changes to editorial policies,
graduate training programs, and research funding priorities, the contract of error will
continue to thwart attempts at robust generalizations.

“For as knowledges are now delivered, there is a kind of contract of error
between the deliverer and the receiver: for he that delivereth knowledge
desireth to deliver it in such a form as may be best believed, and not as may
be best examined; and he that receiveth knowledge desireth rather present
satisfaction than expectant inquiry; and so rather not to doubt than not to err:
glory making the author not to lay open his weakness, and sloth making the
disciple not to know his strength.”

The Advancement of Learning, Francis Bacon, 1605 (8:170–171)
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INTRODUCTION

Little has changed since Bacon penned these perceptive words nearly four hundred
years ago. He clearly recognized a fundamental weakness of human nature: We
prefer entertainment to challenge. This weakness—when coupled with a deep faith
in modern statistics, a general unwillingness to acknowledge that some results will
appear significant due to chance, and journal editorial policies that explicitly dis-
courage replication—potentially undermines our quest for a robust understanding
of ecological and evolutionary phenomena. Together, these conspire to perpet-
uate a collective contract of error, where popular beliefs are sanctified by the
selective publication of results that are either statistically significant or consistent
with theory or expectation, and where a peer-review process discourages the very
contributions that are needed most: formal replicate studies.

How do we come to accept that a generalization has been demonstrated sci-
entifically? For the most part, we judge a generalization’s validity based on our
reading of the scientific literature and our sense of the internal consistency of this
literature and its consistency with our own personal observations. But if statistical
significance of a result—or its concordance with pre-conceptions—influences the
likelihood of publication, or if oft-repeated claims in review papers reinforce belief
in a paradigm even where the evidence remains ambiguous (33), then how many
emerging generalities reflect biological reality as opposed to collective wishful
thinking embroidered with statistical support?

This problem is exacerbated when advocates buttress their strongly held vision
of a particular phenomenon with seemingly compelling theoretical and empiri-
cal support (42, 73), thereby encouraging others to follow along with their own
independent confirmations (2, 86, 96). Eventually, if the claims are exaggerated,
either (a) the primary protagonists retire or pass on, and without their contin-
ued proselytizing others lose interest (as eventually happened to one branch of
quantitative genetic methods, (70), or (b) the claims trigger a backlash among
skeptics, and the weight of evidence declines or swings in the opposite direction
(e.g., see Figure 13 below, and Refs. 2, 84, 86, 96, as possible examples). Such
oscillations can yield sufficient distrust that even intriguing biological phenomena
may be ignored because the waters have become so muddied by contradictory
claims.

In fields where repeated tests of specific hypotheses are more commonplace
(physics, molecular biology, medicine), an average result seems eventually to
emerge from the variation among studies. This happens, in part, because the suc-
cess of subsequent work depends so much on replication of prior methods and
results. In ecology and evolution, where particular outcomes are typically re-
peated with different species or systems rather than truly repeated, we build up an
impression of repeatable patterns by averaging over many heterogeneous studies
either qualitatively or else quantitatively via meta-analysis. But, as will become
apparent, these tests are as likely to reinforce an illusion as they are to validate a
biological pattern.
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Quasireplication and Selective Reporting

The practice of repeating studies with different species or systems—but not with
the same species or system—seems so entrenched in many biological disciplines,
including ecology and evolutionary biology, that I think it deserves a name:
quasireplication. Quasireplication refers to what others have variously called, in
different contexts, “imitative or acquisitive study” (18), “normal science” (60),
“encyclopedism” (85), “advocacy science” (120), or “corroborative research”
(101). Unfortunately, quasireplication is not true replication. Unless it is combined
with true replication, it seems more likely to mislead than to reassure for two
reasons.

First, quasireplications seem more vulnerable to selective reporting (the ten-
dency to publish only a subset of studies that were undertaken) and therefore likely
to lead to publication bias (deviations in average effect sizes caused by selective
reporting) (12, 13). Authors who have explicitly set out to replicate a previous
study as closely as possible will likely have more at stake in the outcome, since
any outcome—whether confirmatory or not—would be of value. However, au-
thors simply asking whether a popular pattern exists in their favorite organism
or system may be less inclined to report negative or contradictory results unless
they have unusually great confidence in the power of their test. Quasireplication
may seriously compromise the validity of generalizations because repeated reports
of popular or trendy results in a variety of different species or systems reinforce
belief in their generality, even though much of the support may derive purely from
selective reporting.

Second, quasireplication does not provide nearly the same strength of test as
does true replication, and therefore it is less effective at resolving differences of
opinion about the validity of hypotheses or results. For example, if quasirepli-
cated studies present discrepant results, opponents of a particular hypothesis will
highlight them as contradictory evidence, but proponents of the same hypothesis
can simply dismiss them as not a true replication of the original claim. The result
is bickering, hand waving, and meta-analyses conducted or interpreted in different
ways to support one or another cherished belief (74, 80, 105). Such debate is al-
most entirely deflated by a few well-conducted, fully replicated tests of definitive
or classical studies.

Quasireplication nonetheless has an important role. It offers the quickest route
to true biological generalizations. However, it should not be used as a substitute for
true replication, because of its vulnerability to selective reporting. Clearly, what is
needed is a proper balance between the two.

Prior Controversies

Controversies over the validity of prevailing dogma are not new. In the early 1980s,
a veritable donnybrook erupted between community ecologists who believed, fol-
lowing Platt (85), that explicit hypothesis testing was the only proper research pro-
tocol (95, 101, 102), and others who argued against such a rigid approach (87) or
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advocated a compromise (92, 93). Elner & Vadas (33) offered a particularly illumi-
nating retrospective of the debate over mechanisms driving the lobster/urchin/kelp
system in the western Atlantic, in which “over a period of approximately 20 years,
[published] explanations for the phenomenon invoked four separate scenarios,
which changed mainly as a consequence of extraneous events rather than experi-
mental testing.” Changes in viewpoint were driven as much by sociological as by
biological factors. Although much of the debate revolved around how hypotheses
are best tested, one recurring cry was for more formal replication of prior research
rather than the accumulation of more quasireplicated studies (95, 101).

We seem to have made little progress in the intervening 20 years, but signs of
change are increasingly evident. Concerns have recently been raised about selective
reporting for several phenomena, including the adaptive significance of enzyme
polymorphism (16), correlations with allozyme heterozygosity (52), adaptive sex-
ratio variation in mammals (36), and relations between fluctuating asymmetry and
sexual selection (80). Concerns have also been raised about selective reporting
and publication bias in biological research in general (26). Apparently we are
beginning to acknowledge the immensity of the problem.

Unfortunately, while meta-analytic techniques may help reveal biases due to
selective reporting, they cannot, at present, reliably correct for them (12, 14, 19, 57).
Furthermore, simple graphical techniques like the funnel graph (64) may prove
more useful than summary statistics for judging the validity of emerging
generalizations.

RESEARCH SYNTHESIS AND PATTERNS OF REPORTING

Few would dispute the value of quantitative approaches to reviews of the literature.
But do such quantitative syntheses further exacerbate the contract of error by lend-
ing statistical support to collective preconceptions? Disentangling true biological
effects from the biases introduced by selective reporting remains one of the most
serious unsolved problems of meta-analysis (12, 13, 19, 50, 57).

Meta-Analysis: A Brief Overview

Formal methods of quantitative research synthesis form the domain of meta-
analysis (25, 55, 77, 91). In meta-analysis, various statistical results from multiple
studies are first converted to a standard statistic—effect size—to allow quantita-
tive summarization. Several effect size statistics are available (25, 77, 91), but the
correlation coefficient is perhaps the most popular in ecological and evolutionary
studies (7).

Correlation coefficients simply describe the consistency of an association
between two variables and have four advantages: (a) They are a familiar statistic;
(b) they range between zero and±1.0; (c) when squared they yield the coefficient
of determination (98), which describes the percent of variation in Y explained
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by variation in X; and (d ) statistical significance thresholds provide a useful ref-
erence against which published statistics may be compared to test for selective
reporting (80). However, correlation coefficients reveal nothing about the strength
of an association (i.e. the amount of change in Y for a given change in X), so the
familiar—but often ignored—caution about not mistaking statistical significance
for biological significance must be repeated.

Meta-analysis has a long history in psychological and educational research
(45, 57, 68) and is now widely used to assess the strength and validity of medical
research findings (57, 75, 77) [see Becker et al (11) for a particularly useful com-
pact review of books on meta-analytic methods]. In these fields, concerns about
publication biases have also been widespread (29, 61) because the validity of a
quantitative outcome may have a profound and potentially expensive impact on
public policy.

Meta-analysis has also received increasing attention in ecology and evolution
following its original application to the effects of age on fecundity in birds (56),
a prominent application to the great debate of the mid-1980s over the impact of
competition in the field (45), and a convenient, compact review that introduced
it to a wide audience (7). More recently, even Bayesian statistical approaches
are being applied as an alternative to conventional meta-analytic methods (108).
As the popularity of meta-analysis has increased, though, more and more authors
have expressed concern about the impact of publication bias on statistical sum-
maries (1, 2, 7, 80), a point that was not always emphasized in earlier meta-analyses
(e.g., see 45, 47). Because of the profound bias selective reporting may introduce,
great care must be taken to avoid simply re-enforcing the bias by relying on sim-
plified summary statistics within a meta-analysis.

Although not without its shortcomings (27, 30, 39), meta-analysis offers a
significant advance over narrative research synthesis. Just as cladistic methods
have revolutionized phylogenetics—by forcing all steps in an analysis to be made
transparent (including data to be analyzed, characters and character state defini-
tions, weighting protocols, and analytical procedures)—meta-analysis has the po-
tential to revolutionize research synthesis in ecology and evolution. Unfortunately,
just as cladistic analyses can be slanted in a preferred direction, so can meta-
analysis (31). The exchanges between Givens et al (43) and commentators (14) on
the second-hand smoke debate, and between Palmer (80) and Thornhill et al (105)
regarding fluctuating asymmetry and sexual selection, are particularly illuminating
in this regard.

Potential Causes of Selective Reporting

Many factors influence probability of publication. Some are of little consequence
to research synthesis (e.g., loss of funding, loss of motivation or interest unrelated to
early results, distraction by other activities) because they are unrelated to a research
outcome. However, other causes of underreporting—statistical nonsignificance,
inconsistency with expectation, inconsistency with theory—may seriously bias
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meta-analytic summary statistics. What data exist suggest this problem may be
profound.

Statistical Significance of Results Perhaps the most familiar and widespread
cause of selective reporting is the statistical significance of results (12, 13, 50).
It may influence both an author’s willingness or desire to press forward with
publication and the willingness of editors and referees to accept a result.

The impact of statistical significance is most easily assessed when the outcomes
of both published and unpublished studies may be evaluated retrospectively (12).
In retrospective surveys of studies known to have been conducted, those yielding
statistically significant results (P< 0.05) were more likely to be published, and
published sooner (e.g., 24, 100). In addition, among nonsignificant studies, those
yielding clearly nonsignificant results (P> 0.1) were more likely to be published
than those yielding ambiguous results (0.05<P< 0.1) (100). Clearly, not only
the statistical significance, but also the statistical clarity of a study’s outcome can
influence its likelihood of publication.

Consistency with a Preferred HypothesisWeighted mean effect sizes from a
meta-analysis might be trusted if the effects of preconceptions, both positive and
negative, averaged out. But what if a preconception is widely shared? Even if it
had no biological validity it could still bias the weight of published evidence in its
favor, and summary statistics from meta-analyses would serve only to reinforce
this bias.

An example from medical research suggests just such a bias. When studies
of the effects of acupuncture were compared to other randomized or controlled
trials, certain countries reported disproportionately more positive findings than
others (112). Those countries reporting more positive findings also happened to
be countries in which acupuncture was considered an acceptable treatment. In
addition, “no trial published in China or Russia/USSR found [an acupuncture]
treatment to be ineffective” (112). Alternatively, in view of the well-known and
sizeable placebo effect (49), perhaps the higher incidence of positive findings
reflected cultural differences in the belief in acupuncture’s effectiveness rather
than selective reporting. Patients in China and Russia may, in fact, have shown
demonstrably better responses to treatment.

Consistency with Theory Certain results might be under-reported because they
make no sense theoretically, even though sampling error dictates that theoretically
nonsensical values should arise occasionally due to chance.

Heritability estimates provide a test for such a bias. In the absence of sampling
error, theory predicts that heritabilities should range from zero (no resemblance
between parents and offspring) to 1.0 (offspring exactly resemble the mean phe-
notype of their parents) (35). For well-behaved polygenic traits, heritabilities in
excess of 1.0 would imply that offspring consistently deviated more from the pop-
ulation mean than the average phenotype of their parents, and heritabilities less
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than 0.0 would imply that the more parents deviated from the population mean in
one direction the more their offspring deviated in the other!

Few evolutionary biologists would seem likely to place much belief in the
biological significance of such extreme heritability estimates (h2 < 0.0, h2 >

1.0). However, sampling error dictates that some should arise simply due to chance,
particularly when based on small sample sizes (66). The underreporting of nega-
tive heritabilities (see Heritability: Impact of Theoretical Preconceptions, below)
reveals that consistency with theory clearly influences likelihood of publication.

Even where sampling error may be negligible, inconsistency with a strongly
held theory may discourage acceptance of a result. For example (42a), prior to
1956, physicists believed that parity (i.e., mirror image counterparts of all physical
phenomena including positive/negative charge, matter/antimatter, right/left spin)
was always conserved. This belief was so strong that when three physicists ob-
served a parity violation in the decay of a radium isotope in 1928 and again in 1930,
the result was ignored even though it was seen “in all readings in every run, with
few exceptions”(42a:218). The result simply did not coincide with any accepted
theory. Not until 1956 was theory revised to admit the possibility of parity vio-
lations in weak interactions, for which the authors later received the Nobel Prize
in physics. Shortly afterwards the first supposedly definitive violation of parity
was seen in the beta decay of cobalt 60 (an excess of electrons is emitted from
one end of the spinning nucleus) and then quickly confirmed for many other weak
interactions. Inconsistency with theory had therefore discouraged the acceptance
of repeatable observations of parity violation for over 25 years.

The “Fail-Safe” Number and Its Limitations

The fail-safe number (23, 91) is often invoked to reassure meta-analysts that selec-
tive reporting would have to have been severe to account for the overall statistical
significance of a particular effect. It estimates the number of studies of zero effect
that would have to be published to reduce a weighted-mean effect size to nonsignif-
icance. A fail-safe number of 1000 therefore means that 1000 studies of zero effect
would have to have gone unpublished—left in a file drawer (90)—for a particular
average effect to have reached statistical significance due to selective reporting.

Although easy to compute and statistically well-defined, the fail-safe number
can yield a deceptive impression of how robust a particular meta-analytic result is.
This deception arises because the fail-safe computation assumes that all unpub-
lished studies are of zero effect. Clearly, though, some unpublished studies must
have yielded results in the opposite direction (e.g., compare Figure 7 to Figure 14
below). So while 1000 studies of zero effect might reduce a meta-analytic mean
to nonsignificance, only 100 or fewer studies of zero and opposite effect could re-
duce a meta-analytic mean to nonsignificance. Therefore, “if the literature is one in
which a large number of unreported studies with opposing results may exist, then
the usual fail-safe number may add unwarranted confidence to the interpretation
of the reported (but potentially biased) results” (10:228).
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No simple solution to this problem seems to exist, so conclusions that depend on
a seemingly large fail-safe number must be viewed with considerable skepticism.

A GRAPHICAL APPROACH TO RESEARCH SYNTHESIS

The Value of a Graphical Approach

The greatest insurance against being misled by “the pernicious influence of the
modern tendency to deify the statistical significance test” (39) is appropriate graph-
ical presentation of research results. If patterns are not apparent in simple graphical
form, one may legitimately wonder about their biological significance (67).

Light & Pillemer (64) introduced a particularly attractive graphical approach to
the study of selective reporting: the funnel graph (Figure 1; a scatterplot of effect
size as a function of sample size). Like many graphical approaches (4), funnel
graphs offer several advantages. First, they allow readers to judge for themselves
how well behaved the data are: Do published results converge on some average
value with increasing sample size? Are data approximately normally distributed
so that a mean and standard error are appropriate statistical descriptors? Second,
they allow differences between groups to be judged more easily: Are putative
differences between groups of interest apparent to the eye or do they depend upon
statistical wizardry (4)? Third, a funnel graph also provides a powerful exploratory
tool for determining whether statistically significant heterogeneity, due to contrasts
of biological or methodological interest, may have been confounded by selective
reporting (80): Are studies reporting larger effects disproportionately based on
smaller sample sizes?

Several meta-analyses have incorporated funnel graphs to show how effect
sizes converged toward an average with increasing sample size (e.g., 6, 28, 45), but
rather few have used them to test for selective reporting (32, 80, 114). Why such
graphical presentations are not more widely used is hard to understand, except
perhaps because, as Magnusson (67:148) wryly reflects, “[scatterplots] are not
very scientific. After all, anyone, even a nonscientist, could interpret them.”

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1 Hypothetical funnel graphs (64)—effect size as a function of sample size (log
scale)—as modified in Ref. 80. (a) Expected pattern of purely sample size–dependent
variation in effect sizes. (b) The impact of selective reporting when the true effect size is
weak (the classical funnel pattern). (c) The impact of selective reporting when the true effect
size is moderate (one side of the funnel is missing, and average effect size now depends
on sample size). Shaded areas and open circles indicate areas of a reduced likelihood of
publication due to selective reporting. Dotted lines indicate the null hypothesis, long-dashed
lines indicate overall weighted mean, and curved lines are significance levels for correlation
coefficients (P= 0.05) from Table R of Rohlf & Sokal (89).rbiasrefers to the correlation—
sometimes significant statistically—between effect size and sample size (80).
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Funnel Graphs Showing No Bias

A scatterplot of effect size versus sample size (Figure 1a) should exhibit three
predictable characteristics if results have not been influenced by selective reporting
(80): (a) The variance of effect sizes should increase as sample sizes decrease;
(b) the distribution of effect sizes should be normal for all sample sizes; and (c) the
mean effect size should be independent of sample size. Any departures from these
three criteria suggest nonrandom reporting of results (see Interpreting Apparent
Bias in Funnel Graphs below for one alternative explanation).

Where all results come from a single study, and where sample sizes vary con-
siderably, effect sizes should vary as expected in the absence of selective reporting
(Figure 1a), unless authors have somehow censored or introduced bias into their
own data. Two examples illustrate the expected pattern of purely sample size–de-
pendent variation. In one (Figure 2a), the author concluded that no evidence existed
for a biased sex ratio in European sparrowhawks (76). In the other (Figure 2b), the
scatter clearly converged on a value greater than zero, indicating strong statistical
support for assortative mating in water striders (6). In both cases, the data behaved
as expected in the absence of selective reporting: (a) The variance increased with
decreasing sample size, (b) the data were approximately normally distributed at
all sample sizes, and (c) the mean effect size did not depend on sample size.

Figure 2 Two examples of within-study variation: (a) sex ratio variation among samples of
nestlings of the European sparrowhawk (76) and (b) estimate of degree of assortative mating
among populations of water striders (6). Dotted lines, long-dashed lines, and curved lines in (b) as
in Figure 1. Curved lines in (a) are binomial significance levels (P= 0.05, two tailed) from Table
Q of Rohlf & Sokal (89). In (a) the scatter converges on the null hypothesis of no sex-ratio bias
with increasing sample size, whereas in (b) the scatter converges on a weighted mean (long-dashed
line) that is different from the null hypothesis (zero).
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Two Kinds of Bias Revealed by Funnel Graphs

When combined with statistical significance thresholds, a funnel graph may reveal
two different manifestations of selective reporting. First, an underreporting of
nonsignificant results based on small sample sizes, where the true underlying
effect size is weak, yields a hole in the funnel and therefore a departure from
normality (open circles and shaded area, Figure 1b). Second, an underreporting
of nonsignificant results based on small sample sizes, where the true underlying
effect size is moderate, yields a dependence of effect size on sample size (rbias

in 80), because results toward one side of the funnel are less likely to reach the
threshold of statistical significance (open circles and shaded area, Figure 1c).

Interpreting Apparent Bias in Funnel Graphs

Those unfamiliar with the phrases “selective reporting” and “publication bias”
might think they imply improper behavior by authors, but such an inference is
unwarranted. First, because few scientists publish the results of all studies they
undertake, some will inevitably lose interest if a result is not significant statistically,
or not clear cut, or somehow doesn’t make sense. In this respect, virtually all
scientists are guilty to some degree. Second, referees and editors are not inclined
to accept negative results based small sample sizes.

But even patterns consistent with selective reporting can arise for legitimate
reasons. For example, a significant dependence of effect size on sample size
(Figure 1c) may also arise for completely rational reasons: Scientists often ad-
just sample sizes to achieve a desired level of statistical significance. Sample-sizes
might be adjusted in two ways. First, if a pilot study reveals a modest effect size,
then a biologist may quite legitimately elect to use smaller samples in the final
study design, since larger sample sizes are not required to demonstrate the statisti-
cal significance of the effect. In other words, sample sizes may be adjusted a priori
to the size of the effect via a power analysis (98:260–65). Second, statistical sig-
nificance may be monitored as data are accumulating, and data collection may be
stopped once significance is achieved. Both scenarios would yield a dependence
of effect size on sample size (Figure 1c), but only if true effect sizes genuinely
varied among studies. Therefore, a dependence of effect size on sample size among
heterogeneous studies is not unequivocal evidence of selective reporting.

One pattern observed among studies of fluctuating asymmetry and sexual
selection—where experimental studies yield larger effect sizes than do observa-
tional ones (Figure 3)—illustrates just such a problem. Experimental studies are
often based on smaller samples and yield larger effects than observational ones
because the investigator has more control over extraneous factors. But if many ex-
perimental studies are conducted, and only those that reach statistical significance
are published, the pattern apparent in Figure 3 may be entirely an artifact of selec-
tive reporting. The conspicuous dependence of effect size on sample size (Figure 3;
see also Figures 10, 11, and 12 below) strongly suggests selective reporting.
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Figure 3 Effect size (correlation coefficient,r) as a function of sample size (log scale) for
correlations between fluctuating asymmetry and individual attractiveness for experimental (x) as
opposed to descriptive (O) studies (74). Dotted line, long-dashed line, curved lines, and shaded
region, as in Figure 1. Modified from (80). Asterisked values were excluded from the meta-
analysis by the original authors (74). The data on which this figure was based may be obtained
from: http://www.biology.ualberta.ca/palmer.hp/DataFiles.htm.

The only way to distinguish between these two hypotheses for a dependence
of effect size on sample size (i.e., rational planning vs selective reporting) is to
conduct a formal replication of previous studies. Clearly, replicate studies should
reveal approximately the same effect size regardless of sample size. If, however,
the effect size is significantly lower in a replicated study based on larger sample
sizes, then then the original study was biased.

Are studies based on small sample sizes necessarily a biased sample of those
that were conducted? Some evidence suggests not. For example, Cappelleri et al
(17) compared the results of individual large studies to those of multiple small
studies in 61 meta-analyses of pregnancy and childbirth in which at least one
large study was included along with a number of studies based on smaller sample
sizes. Discrepancies between the single large study, and the average effect of the
multiple small studies, were found in 15 of the 61 meta-analyses, but of these, 10
were explained by differences between controls (N= 5), differences in protocol
(N= 4), or publication bias (N= 1). In the end, only one discrepancy (of 15) lacked
a plausible explanation. For some human studies, where a single common effect
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size is anticipated, meta-analyses of multiple smaller studies do appear to provide
reliable estimates of the outcomes that would be achieved with larger sample sizes.

Limitations to Funnel Graphs Unfortunately, useful as funnel graphs may be for
visualizing selective reporting (80), their utility drops dramatically as the number
of studies declines (32). Funnel graphs of fewer than 30 studies may still be helpful
for judging whether contrasts of biological interest may have been confounded by
sample size (see Figure 3), but they will likely lack power adequate to reveal any
but the most pronounced selective reporting (32).

Correcting for Bias Due To Selective Reporting

Only by exhaustively uncovering all studies conducted, whether published or not,
can the biases due to selective reporting be eliminated. Such a goal would be un-
achievable in ecology and evolution. Both conventional (12) and Bayesian (19, 57)
statistical corrections for publication bias have been proposed, but the limitations
of both approaches suggest they offer no quick fix (12, 14, 43).

Ultimately, selective reporting is an inevitable element of the scientific enter-
prise. The challenge is to determine the extent to which it prejudices our under-
standing of ecological and evolutionary phenomena.

THREE EXAMPLES OF SELECTIVE REPORTING

Preamble

I have not attempted to conduct formal meta-analyses for any of the examples
discussed below, nor have I systematically surveyed the literature for more recent
published studies in these areas. Such endeavors lie well outside the scope of this
review. In the three sections that follow, my goals are (a) to illustrate the value
of a graphical approach to data summarization (the funnel graph; 64), and (b) to
examine recent reviews of biological phenomena for which I could ask specific
questions about what motivates biologists to publish their results. Because of
the scale of this review, I was obliged to accept values reported in published
summary tables as correct, and did not attempt to validate them against the original
publications.

The three examples selected for scrutiny were chosen to explore different
aspects of reporting patterns: (1)sex-ratio variation—how statistically significant
associations may arise due to random sampling error and encourage detailed ex-
planations of their putative biological significance, (2)heritability estimates—how
a priori expectations of what results make sense theoretically influence reporting
patterns, and (3)fluctuating asymmetry and sexual selection—how both statis-
tical significance of results and consistency with a preferred hypothesis may
influence reporting patterns.
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1. Adaptive Sex Ratio Variation in Birds:
Significant Associations Among Nonsignificant Samples

Studies of sex-ratio variation in birds provide a particularly illuminating example
of selective reporting because on closer inspection few, if any, compelling data
exist for adaptive departure from a 50:50 sex ratio in any species (20, 119), in
spite of numerous published claims to the contrary. In fairness, many studies have
reported little or no departure from a 50:50 sex ratio at hatching, and some have
specifically drawn attention to the absence of variation greater than expected due
to binomial sampling (37, 48). But new papers steadily appear claiming statistical
support for adaptive sex-ratio variation (59, 94).

One attractive aspect of sex-ratio variation is explicit alternative hypotheses
about which, if either, sex should predominate. Fisher (40) noted that, in the
absence of confounding factors, frequency-dependent selection should promote a
50:50 sex ratio: The rarer sex will always have a relatively higher fitness. Even in
the absence of selection, a 50:50 sex ratio is expected where sex is determined by
the conformation of a single chromosome pair. However, local mate competition
or local resource competition (reviewed in 5, 41) may promote an excess of one
or the other sex.

Most departures from 50:50 sex ratio are interpreted in terms of these latter
two hypotheses (e.g., see 44). However, funnel-graphs of results tabulated in two
reviews suggest most, if not all, sex-ratio variation in hatchling birds does not
exceed that expected due to binomial sampling variation.

Most authors who compile sex ratios seem aware that sampling error may yield
spuriously significant results (e.g., 20, 44), but not all deal with it in the same
way. For example, both Cockburn (21) and van Schaik (110) set an arbitrary sam-
ple size as large enough (N= 100 and 200, respectively), but both include studies
of smaller sample sizes in their analyses if results were significant. Clearly, statis-
tical significance in these cases outweighed the authors’ a priori belief that large
sample sizes were required for adequate confidence. This example also illustrates
the widespread tendency to accept results based on small sample sizes if significant
but to minimize or dismiss them if not significant.

Clutton-Brock’s Review Following a detailed examination of published sex ratio
variation in birds, Clutton-Brock (20:326–27) concluded: “Sound evidence for
sex ratio variation at hatching is thus scarce. There is some evidence that the
sex ratio can vary with position in clutch but trends show no consistency across
populations or species. Significant relationships have been found with order of
clutch ... and maternal age ... but whether these indicate that birds can vary the
hatching sex ratio of their offspring in an adaptive fashion or whether they represent
the small proportion of cases where the null hypothesis has been wrongly rejected
by chance is as yet not certain.” These conclusions echoed an earlier one by
Williams (119) that the data for birds did not support any theory of adaptive sex
ratio evolution.
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Two lines of evidence support Clutton-Brock’s (20) suspicion that sampling
error alone accounted for the observed sex-ratio variation. First, of 85 separate
sex-ratio estimates from 14 studies of 8 species, 11 differed significantly from
parity at 0.05> P> 0.01 and 2 were significant at P< 0.01. These numbers do
not differ significantly from those expected due to sampling error (P= 0.116;
Chi-square test with correction for continuity), although slightly more significant
studies appear to have been reported (P= 0.035) when they are divided into two
groups, those significant at P< 0.05 and those not. Second, a funnel-graph of these
data clearly reveals the pattern expected for purely random, sample size-dependent
variation in sex ratio (Figure 4a).

Furthermore, among studies where the title of the original paper stated or im-
plied a biased sex ratio (i.e., where the authors wished to emphasize a significant
departure from parity), a closer examination suggests that statistical significance
arose due purely to sampling error. First, the sample sizes of these studies were
significantly smaller than those of the other studies in Clutton-Brock’s review

Figure 4 Variation in the sex ratio of samples of birds as a function of sample size (log scale) (all
data from Ref. 20). Single species are represented by multiple points and, in some cases, data for
single species come from multiple papers. Dotted lines indicate the null hypothesis, and curved
lines indicate binomial significance levels (P= 0.05, two tailed) from Table Q of Rohlf & Sokal
(89). (a) samples differentiated by title of paper (does the title state or imply a biased sex ratio was
observed?), (b) samples for single species exclusively from the four papers with a title stating or
implying a biased sex-ratio [x, position in egg-sequence (3);O, maternal age (15);¤, time in laying
season (115)]. The data for grackles [¥ (53)] are not comparable because the sex-ratio variation
tabulated by Clutton-Brock was unrelated to the main point of this paper. The data on which this
figure was based may be obtained from: http://www.biology.ualberta.ca/palmer.hp/DataFiles.htm.
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(<0.001, Mann-Whitney U-test; Figure 4a). Second, although only 2 of the 21
individual samples actually deviated significantly from a 50:50 sex ratio, 3 stud-
ies reported significant associations with sex ratio (Figure 4b). In other words,
random variation among nonsignificant samples yielded statistically significant
associations that seemed biologically interesting and could easily be interpreted
in light of one or another theory of sex allocation.

Gowaty’s Review In contrast to Clutton-Brock (20), Gowaty (44) concluded that
small sex-ratio differences between passerine and anseriform birds were signifi-
cantly correlated with sex-dependent patterns of philopatry: The sex that dispersed
further was the sex that tended to be overproduced. Even though sex ratios ap-
peared to depart significantly from parity in only 5 of the 12 passerine species,
and in none of the ducks and geese (Figure 5), Gowaty noted that what deviations
did exist (whether significant or not) tended toward excess males in ducks and
geese (5 of 6 species) and excess females in passerine birds (11 of 12 species)
(Figure 5). Gowaty concluded that the consistent directions of these differences
were too improbable to be due to chance (P= 0.004 at the level of species, and
P = 0.036 at the level of families; Fisher’s exact test), and that “the lack of statisti-
cally significant differences from a 50:50 sex ratio may have obscured biologically
interesting phenomena associated with sex ratio variation in birds” (42:272).

However, a closer inspection of the data and reasoning raises doubts about
these conclusions. First, a funnel graph once again revealed a pattern consistent
with simple sampling variation (Figure 5). Second, species in two other orders also
exhibited sex-biased philopatry, but in these two orders, either the overproduced sex

Figure 5 Variation in the sex ratio
of nestling or fledgling bird species
within each of four orders as a func-
tion of log(sample size) (all data
from Ref. 44). Dotted line and curved
lines as in Figure 4.
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TABLE 1 Number of species or families exhibiting an excess of male or female offspring (from
Ref. 44)a

Number of Species Number of Species Number of Species
Philopatric (Families) with (Families) with (Families) with

Order Sex Excess Males Excess Females 50:50 Ratio

Anseriformes female 5(2) 1(0)

Passeriformes male 1(0) 11(6)

Falconiformes male 6(2) 6(0)

Piciformes male 2(1) 0(0) 1(0)

Male-philopatric 9(3) 17(6) 1(0)
pooled

aSex ratios for both species and families were computed using weighted averages (counts of males and females were pooled
separately across samples and a new ratio computed from these pooled values).

was uncorrelated with the dispersing sex (Falconiformes) or the overproduced sex
dispersed less (two of three woodpecker species) at the level of species or families
(Table 1). When all male-philopatric species were pooled, the dependence of sex
ratio on philopatry ceased to be significant (P= 0.09, contingency table analysis
corrected for continuity). Third, sexual size dimorphism—the presumed raison
d’etre for the departures from 50:50 sex ratio (44)—is negligible in both passerines
and ducks and geese. So the statistical significance of the apparent correlation
between sex ratio and philopatry in birds depended on the orders examined.

Conclusion When the bird sex-ratio data are viewed as a whole (Figures 4 and
5), two patterns emerge. First, even though authors may have drawn attention to
results that were statistically significant, they also reported results that were not
significant. As a consequence, statistically significant samples were only weakly
overreported. Second, the pooled data support rather strongly a tightly constrained
50:50 sex ratio, subject to little more than sampling error (Figure 4a), as both
Williams (119) and Clutton-Brock (20) surmised might be true. The biological
significance of the many studies reporting statistically significant departures from
parity (44, 59, 94) is therefore questionable.

The advent of modern technologies that allow sexing prior to or shortly after
hatching using blood samples (flow cytometry, DNA profiles, microsatellites) has
inspired additional studies of sex ratio variation in birds (94) because such tech-
niques can minimize or eliminate effects of sex-biased mortality after hatching.
Although some seemingly compelling examples are mentioned (e.g., 58), a more
detailed funnel-graph analysis, or explicit replication of some of these results by
others, would be required to reject convincingly the possibility that they too are
simply examples of selective reporting.

In view of the many reports of statistically significant sex-ratio variation in
birds that appear to have arisen simply due to sampling error, I encourage all of
those tempted to offer biological explanations for such patterns to restrain their
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enthusiasm until some of the more striking claims have been replicated indepen-
dently by others. Sex ratios are too easy to measure incidentally as part of another
study, and therefore they would seem particularly prone to selective reporting. Sex
ratios obtained with modern techniques (94) may yield values less confounded by
differential mortality, but they do not avoid the fundamental problem: Departures
from 50:50 require rather large samples to detect reliably (Figures 4 and 5).

2. Heritability: Impact of Theoretical Preconceptions

That theoretical preconceptions alone have an impact on probability of publication
is perhaps most clear cut among studies of heritability. Narrow-sense heritability
describes the degree to which offspring resemble their parents on average (35).
Few biologists would expect offspring to exhibit consistently more extreme pheno-
types than their parents (heritability>1.0), or for offspring to deviate consistently
from the population mean in the opposite direction from their parents (a nega-
tive heritability). But sampling error should yield such heritabilities occasionally,
just due to chance (66). In addition, as sample size decreases, the likelihood of a
negative or extreme positive heritability increases substantially.

Published estimates of narrow-sense heritabilities (116) reveal what appears to
be a clear example of selective reporting (Figure 6). In part, this is influenced
by statistical significance: Nonsignificant studies are underrepresented at small
sample sizes and average heritability decreases significantly with increasing sam-
ple size (P< 0.001, Figure 6). More seriously, even at small sample sizes (N< 50),
where heritabilities are estimated with lower confidence, negative heritabilities are
virtually nonexistent, even though several positive estimates exceed the theore-
tical maximum (Figure 6). At face value, authors appear more comfortable with
super-heritability (h2> 1.0) than with negative heritability (h2< 0.0).

Studies of the heritability of fluctuating asymmetry reveal the same pattern
even more dramatically (Figure 7). The weighted mean heritability is closer to
zero than in the previous example (compare to Figure 6), but again, virtually no
heritability estimates were less than zero. The absence of any but the slightest
negative heritability estimates in both examples (Figures 6 and 7) reveals rather
clearly that theoretical expectations influence the likelihood of publication, quite
independent of any effects of statistical significance.

Where are all the missing negative heritability estimates? Most likely, they
reside in filing cabinets because they made no sense theoretically.

This result is troubling because it implies that even carefully conducted meta-
analyses could yield statistical support for a preconception, rather than a gen-
uine biological phenomenon, if the theoretical grounds for that preconception are
strongly held (but see Figure 14). For example, consider the following thought
experiment. Assume that the true heritability of a particular trait is zero. If 100
biologists independently estimate this heritability, sampling error dictates that half
the observations should be negative and half positive. If those biologists who obtain
negative heritabilities discard their results, or set them to zero as advised by some
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Figure 6 Published heritability estimates (h2) from field studies as a function of sample size and
method of estimation (116). Sample sizes (number of families) were obtained from the original
studies. The dotted line indicates the null hypothesis, the long-dashed line indicates the weighted
mean heritability across all studies (0.452), and the curved line indicates the upper 95% confidence
interval (= 2SE) about zero for heritability estimates according to Falconer (35:166) for parent-
offspring regressions based on one offspring per parent (2/

√
(N − 2)). This confidence interval is

not appropriate for all the methods indicated but does indicate how the significance level varies with
sample size. Over all samples, heritability estimates decreased significantly with increasing sample
size (Spearmanρ corrected for ties= −0.33, P<0.001). The shaded region indicates where obser-
vations are expected due to sampling variation but have been underreported. The data on which this
figure was based may be obtained from: http://www.biology.ualberta.ca/palmer.hp/DataFiles.htm.

practitioners (35), what is the net result? A meta-analysis would likely yield strong
statistical support for a positive heritability that is entirely an artifact of our pre-
conceptions. One can only wonder at how many published heritability estimates
have been exaggerated by this preconception.

3. Fluctuating Asymmetry and Fitness:
Anatomy of a Bandwagon

Fluctuating asymmetry (FA; small, random departures from perfect symmetry; 65)
offers an intuitively appealing measure of developmental precision (the degree to
which the right and left sides of a bilaterally symmetrical organism depart from
perfect symmetry due to the cumulative effects of developmental noise) (79, 82).
It is appealing because of the apparent ease with which it may be measured,
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Figure 7 Published estimates of the heritability of fluctuating asymmetry (h2) for various taxa
and methods of estimation as tabulated on the internet site to accompany Ref. 73. Sample sizes
cannot be interpreted literally here because very different methods were used in different stud-
ies; only the distribution of heritability estimates is relevant. The dotted line indicates the null
hypothesis and the long-dashed line indicates the weighted mean heritability across all studies
(h2 = 0.154). The shaded region indicates where observations are expected due to sampling vari-
ation but have been under-reported. The data on which this figure was based may be obtained
from: http://www1.oup.co.uk/MS-asymmetry.

and because of the seemingly sound theoretical grounds for believing that sub-
tle departures from symmetry really should reveal something about underlying
developmental stability (69, 82, 111).

Over the last 10 years, interest in FA has increased more than 10-fold (Figure 8).
Many biologists have rushed to apply this approach to a variety of questions, since
developmental precision is thought (a) to be reduced by environmental or genetic
stress (see 122 and references therein) and by lowered heterozygosity (113), and
(b) to correlate negatively with measures of individual fitness (72)—including
growth, fecundity, and survival—and with measures of individual attractiveness
in studies of sexual selection (74, 104, 105).

Three lines of evidence, however, suggest that selective reporting has greatly
exaggerated the apparent strength and generality of one association: the correla-
tion between individual asymmetry and measures of individual quality, fitness,
or attractiveness. This evidence includes (a) the absence of parallel asymme-
try variation among individuals, (b) theoretical demonstrations of the limited
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Figure 8 Number of citations per year that include “fluctuating asymmetry” in the title, abstract,
or keywords in the electronic database of Biological Abstracts (x), or cite the 1986 review by
Palmer and Strobeck (82), as determined from Science Citation Index (O).

statistical power of FA as a measure of underlying developmental instability, and
(c) patterns of selective reporting among studies of FA and sexual selection that
are not observed in other studies of FA variation.

Absence of Parallel Asymmetry Variation Among IndividualsIf subtle devia-
tion from symmetry is a reliable indicator of underlying developmental stability in
an individual, as claimed repeatedly in the FA literature (reviewed in 73), then devi-
ations from symmetry in one trait should correlate with deviations from symmetry
in other traits on that same individual. The virtual absence of parallel asymme-
try variation among individuals for morphological traits, however, raises serious
doubts about whether asymmetries of individual traits should be correlated with
any other phenomena of biological interest (52, 78).

An early review of FA variation (82) noted that while asymmetries might be
correlated among populations (a population more asymmetrical for one trait was
typically more asymmetrical for others—the “population asymmetry parameter”
99), they were rarely correlated among individuals within populations (the “in-
dividual asymmetry parameter”; 62). And more recently, an extensive review of
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FA variation in many traits in a variety of organisms reached the same conclusion
(73:53–55).

Limited Statistical Power The limited ability to detect parallel asymmetry vari-
ation among individuals arises from two complementary causes: sampling error
and measurement error.

Not until 1994 was a simple statistical explanation advanced for the rarity
of parallel asymmetry variation among individuals (78:360): The absolute value
of the deviation from symmetry in a single trait of an individual estimates the
underlying right-left variance for that trait with only one degree of freedom (see also
107, 117, 118). In other words, the absolute difference between sides in one trait
of an individual estimates the underlying developmental instability (the potential
right-left variance) of that trait with only one degree of freedom. As most biologists
know, the ability to detect differences among means is limited if they are estimated
with only one degree of freedom each, and the ability to detect differences among
variances is considerably more limited (97).

Simulations confirm this expectation (107). In the absence of measurement
error, the observed correlation between asymmetries in two traits was only 0.287
(r2 = 0.082), even where the underlying instability variance differed by 16-fold
(Figure 9a). So only about 8% of the asymmetry variation in one trait can be
predicted by asymmetry variation in a second on the same individual, even under
ideal conditions: sizeable variation in underlying developmental stability among
individuals and no measurement error.

Measurement error further reduces the expected correlation between asymme-
tries. It can form a sizeable fraction of the between-sides variation because FA
variation is often on the order of 1% of trait size (38, 79) and few biologists mea-
sure traits to a precision much greater than 1%. A high percent measurement error
significantly reduces the strength of asymmetry correlations. For example, only
3% of the variation in|R− L| in one trait is explained by variation in|R− L|
of a second in the same population when measurement error is half of the between-
sides variance (Figure 9). In addition, direct evidence suggests that as the repeata-
bility of asymmetry measures increased in published studies, so did the strength
of asymmetry correlations (109).

Undaunted, those who believe in the predictive value of FA have invoked this
low statistical power to their advantage. For example, Gangestad & Thornhill (42)
argued forcefully that the theoretical maximum correlation between individual
asymmetry and attractiveness should be−0.27 and therefore that the observed
weighted mean effect size of−0.22 implies a high proportion of variation in
attractiveness can be attributed to variation in underlying developmental instability
(105). That they remained unperturbed by the majority of effect sizes that exceeded
this putative theoretical maximum in their own tabulation is a testament to the
strength of their convictions.

Clearly, on purely statistical grounds, the rarity of parallel asymmetry variation
among individual organisms is not surprising. Even if a true correlation between
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Figure 9 Effect of measurement error on the strength of the correlation (r) between absolute
deviations from symmetry (FA) in two traits among individuals in a single sample; kindly simulated
by S Van Dongen using the same model as in Ref. (107), but for 100,000 replications. Each
population consisted of a mixture of individuals exhibiting three different levels of underlying
instability variance: var(R−L) = FA = 1/x, 1, x. Two populations were simulated, as were
two different distributions of FA variation: (x) x = 4, proportions of all three FA levels equal;
(O) x = 2, proportions of all three FA levels equal; (¥) x = 4, proportions of FA levels 1:2:1; (¤)
x = 2, proportions of FA levels 1:2:1. The measurement error variance var(M1−M2) is expressed
as a percent of the median instability variance (i.e., a value of 100 means the variance of replicate
measurements equals the median FA variance between sides).

FA and some trait of interest is 0.2 (close to the putative theoretical maximum), the
statistical power of correlation coefficients is low for routine sample sizes (83):
With a sample size of N= 40, a significant correlation (P≤ 0.05) would be
detected only about 20% of the time (power= 0.2), and even with a sample size
of N = 100, the power is less than 0.5. In other words, even for a true correlation
close to the theoretical maximum, sampling variation should not yield a significant
correlation more than 50% of the time.

What accounts for the remarkable number of statistically significant correla-
tions reported between individual asymmetry and other features of animals such
as fitness or attractiveness? As Houle (52) noted so pointedly, it is hard to un-
derstand how correlations between individual subtle asymmetries and other phe-
nomena of interest can be so common when correlations between asymmetries
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Figure 10 Effect size (correlation coefficient,r) as a function of sample size (log scale) for corre-
lations between fluctuating asymmetry (FA) and stress (x) or various measures of fitness (O) as re-
ported in the meta-analysis by Leung & Forbes (63). Dotted line and curved lines as in Figure 1. The
solid line indicates the least-squares linear regression for stress studies (Y= 0.016 X +
0.098, N= 151 cases; Spearman’sρ = 0.031, P= 0.63), and the long-dashed line indicates
the regression for fitness studies (Y= 0.285 X− 0.691; Spearman’sρ = −0.39, P< 0.001).
Effect sizes are expected to be positive for FA-stress relations (higher stress results in higher
FA), but negative for FA-fitness relations (higher FA is associated with lower fitness). Measures
of fitness included traits like body size, mating success, dominance, secondary-sexual trait size,
survival, condition, and growth. The data on which this figure was based may be obtained from
http://www.biology.ualberta.ca/palmer.hp/DataFiles.htm.

in the same individuals are so rare. Selective reporting seems a likely expla-
nation.

Direct Evidence of Selective ReportingClaims that seem highly improbable
(81) certainly raise the possibility of selective reporting (see http://www.biology
.ualberta.ca/palmer.hp/asym/Curiosities/Curiosities.htm for some examples). Fur-
thermore, evidence from three meta-analyses strongly suggests that selective
reporting of associations between FA and various measures of individual fitness
may be a serious problem.
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Figure 11 Effect size (correlation coefficient,r) as a function of sample size (log
scale) for correlations between fluctuating asymmetry and individual attractiveness for
sex traits (x), human faces (x), and ordinary traits (O) (as tabulated in Ref. 74, fig-
ure modified from Ref. 80). Dotted line, long-dashed line, curved lines and shaded re-
gion, as in Figure 1. Asterisked values were excluded from the original analysis (74) on
methodological grounds. The data on which this figure was based may be obtained from
http://www.biology.ualberta.ca/palmer.hp/DataFiles.htm.

The dependence of effect size on sample size,rbias (80), was highly significant statisti-
cally for signaling traits (sex+ human face; Spearman’sρ = 0.38, P= 0.002, N= 67)
but not for ordinary or nonsignaling traits (Spearman’sρ = 0.16, P= 0.19, N= 73). The
same patterns were apparent when experimental studies were excluded:rbias was highly
significant for signaling traits (ρ = 0.44, P= 0.009, N= 36), but not for ordinary traits
(ρ = 0.12, P= 0.34, N= 69).

First, Leung & Forbes (63:400), in the earliest meta-analysis of FA variation,
concluded that overall correlations between FA and stress, and between FA and
various fitness measures, were “non-spurious” but “fairly weak, and highly het-
erogeneous.” A closer examination (Figure 10) reveals that FA-stress correlations
were largely independent of sample size (rbias = 0.031; P= 0.63) and remained
more or less centered on the overall weighted mean ofr = 0.17. A similar non-
significantrbias was found in a meta-analysis of FA-heterozygosity correlations
(113). FA-fitness correlations, however, revealed a different pattern: As sample
size increased, effect size decreased significantly (rbias= −0.39, P<0.001). Fully
16% of the overall variation in effect sizes could be attributed to variation in sample
size. Average effect sizes appeared moderate (0.3– 0.5) (7) when based on sample
sizes less than 20, but for sample sizes greater than 50, they were weak (<0.2).
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Figure 12 Effect size (correlation coefficient,r) as a function of sample size (log scale) for
correlations between trait size and individual attractiveness (x) and correlations between
symmetry and individual attractiveness (O) (as tabulated in Ref. 104). Dotted line and curved
lines as in Figure 1. The solid line indicates the least-squares linear regression for trait size
(Y = −0.010 X+ 0.130, N= 73 cases; Spearman’sρ = −0.054, P= 0.65), and the
long-dashed line indicates the regression for fitness studies (Y= −0.204 X+ 0.609, N=
73 cases; Spearman’sρ = −0.260, P= 0.027). Effect sizes are expected to be positive for
both relations (larger or more symmetrical traits are more attractive). The trait symmetry
data are the same as those in Figure 11 (74), but were limited to studies where both trait size
and trait symmetry were examined simultaneously. In addition, the sign of the asymmetry
effects was reversed to permit direct comparisons between effects of symmetry and size.

Such a relationship renders statistical summaries of weighted-mean effect sizes
virtually meaningless, since average effect size clearly depends on sample size.

Second, a more restricted meta-analysis that specifically examined correlations
between asymmetry and attractiveness (74), rather than between asymmetry and
a variety of fitness measures, revealed an even stronger suggestion of selective re-
porting (80): (a) The threshold of statistical significance (P= 0.05) rather sharply
defined the upper boundary to a cluster of published associations based on sample
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Figure 13 Change over time in the proportion of studies that reported an association
between fluctuating asymmetry (FA) and sexual selection and the percent of studies that
conducted a test for the repeatability or reliability of the FA signal relative to measurement
error (from Ref. 96). Numbers in parentheses indicate number of studies.

sizes less than 20 (lower left portion of Figure 11); (b) overall effect size declined
significantly with increasing sample size (rbias = Spearmanρ = 0.39, P< 0.001,
N = 140; ‘included’ samples only); (c) rbias was highly significant for signaling
traits (P = 0.002) but not for ordinary or nonsignaling traits (P= 0.19). The
same patterns were apparent when experimental studies were excluded (rbias was
highly significant for signaling traits, P= 0.009, but not for ordinary traits, P=
0.34), so the disproportionate number of experimental studies at small sample size
(Figure 3) was not the cause of the original pattern. Perhaps most seriously of all,
rbiaswas highly significant for signaling traits but not for ordinary traits among the
studies conducted by Møller and Thornhill themselves (see Figure 3 of Ref. 80).

Third, another meta-analysis (104) examined cases in which the effects of both
trait size and trait symmetry on mating success or attractiveness were studied
concurrently. As above (Figure 10),rbias was significant for symmetry variation
(P = 0.027) but not for variation in trait size (P= 0.65) (Figure 12).

Finally, some surprising evidence suggests that many of the initial reports trum-
peting the role of FA in sexual selection were actually spurious results that arose
from high levels of measurement error coupled with selective reporting. Many early
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studies did not test whether the putative FA variation being reported exceeded that
due simply to measurement error, even though measurement error yields bilateral
variation indistinguishable from true FA and was clearly recognized as a serious
problem for FA studies (82). As more studies tested for the significance of FA
variation relative to measurement error, fewer and fewer reported significant asso-
ciations with FA (Figure 13). This change over time remains striking, even if the
small number of studies prior to 1993 are ignored.

All of the above evidence suggests that studies of FA and individual fitness or
attractiveness have been seriously confounded by selective reporting, particularly
since a significantrbias was absent among studies of FA and stress (63), FA and
heterozygosity (113), and trait size and attractiveness (104). In the end, studies
of FA and sexual selection, or FA and individual fitness, will likely reveal more
about the sociology of science than about biology.

Alternative Hypotheses to Selective Reporting:
Disproof by Replication

The preceding three examples suggest selective reporting may have promoted dubi-
ous biological conclusions. This hypothesis is open to disproof. If genuinely repli-
cated studies reveal effect sizes of magnitude and direction similar to those of the
original results, then the hypothesis of selective reporting for these cases is rejected.

Sex Ratio Variation Sex-ratio variation in birds, in two formal reviews, appears
not to exceed that expected due to sampling error. No doubt this will trouble many
who believe otherwise. The hypothesis of purely random variation may be rejected
readily by one or two truly replicated studies of published claims of striking depar-
tures from parity. For example, if sample sizes exceeding 200 revealed comparable
departures from a 50:50 sex ratio in different eggs in the laying sequence, as re-
ported for snow geese based on sample sizes less than 30 (3), then the hypothesis
of selective reporting can be rejected. In fact, this replication has already been
conducted. Cooke & Harmsen (22), based on a more detailed study (though not
on much larger sample sizes), found no statistical support for a dependence of sex-
ratio on laying sequence. Seasonal sex-ratio variation in red-winged blackbirds
is similarly suspect because two independent studies yielded contradictory results
(37, 115). Similarly, if sex ratio of offspring varied by similar amounts among
mothers of different ages in red-winged blackbirds based on sample sizes of 300
instead of about 100 (15), then the hypothesis of selective reporting can be rejected.

The only way to determine whether the few significant associations reported by
Clutton-Brock (20) and Gowaty (44) were due to chance would be to repeat some
of the original studies.

Heritability Negative heritability estimates appear to be greatly underreported in
the literature (Figure 6). Among studies of the heritability of FA prior to 1998, such
underreporting appears quite pronounced (Figure 7). The claim that FA variation
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is significantly heritable (73), and the use of that claim to buttress other preferred
hypotheses (73), thus seems open to question.

One recent study of the heritability of FA variation reveals just how variable
heritability estimates may be (121). Not only does heritability vary by several fold
among traits and populations, but as many estimates are negative as are positive
(Figure 14). Furthermore, some of the negative estimates are more extreme than
the most extreme positive ones. Woods et al (121) are to be commended for re-
porting such results. Even though negative heritability estimates may make no
sense theoretically, they should arise due to sampling error (66). If such negative
heritabilities were excluded from prior studies, then the apparent average signif-
icant heritability suggested by Figure 7 (73) and elsewhere (108) may be largely
or entirely an artifact of selective reporting.

One or two formal replications of earlier studies, particularly of those that
reported highly significant heritabilities of FA variation (e.g.,h2 = 0.63 in stick-
leback lateral plate numbers) (46) and (h2 = 1.072 in scorpionfly forewings)

Figure 14 Estimates of heritabilities (parent-offspring regressions) inDrosophila mela-
nogaster (121). Estimates were obtained for two bristle and three skeletal traits in three
field and one laboratory population. The dotted line indicates the null hypothesis. N refers to
the number of families in which “one to two” female offspring were measured per female parent.
Abbreviations: C, Cairns; CH, Cherry Hill; GC, Gold Coast. The data on which this figure was
based may be obtained from http://www.biology.ualberta.ca/palmer.hp/DataFiles.htm.
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(106) would provide a far more robust test of the true heritability of FA vari-
ation than additional quasireplications in other taxa or traits. If these high
heritabilities could be repeated, then, again, the hypothesis that the overall sig-
nificant heritability of FA (Figure 7) is due to selective reporting would be
rejected.

Fluctuating Asymmetry and Sexual SelectionRemarkably, in spite of the huge
impact Møller’s (71) original study had on interest in asymmetry as a measure
of individual attractiveness, I am unaware of any independent published replica-
tion of the claim that female barn swallows (Hirundo rustica) prefer males with
outer tail feathers that are more symmetrical, or of any other claims for corre-
lations between asymmetry and individual attributes in barn swallows or other
organisms. In view of the large number of studies of correlations between individ-
ual asymmetry and fitness/attractiveness, the absence of replicative studies seems
remarkable.

If any claims for correlations between subtle asymmetries and attributes of in-
dividuals can be repeated by others with no vested interest in a particular outcome,
only then will such claims earn the respect of credibility. Until such time, the hy-
pothesis that correlations between subtle asymmetries and attributes of individuals
result predominantly from selective reporting remains a viable one.

DISCUSSION

I have found these results particularly sobering and have gained little pleasure
from summarizing them. Clearly all of us—meticulous and conscientious as we
may be—are guilty of selective reporting to some degree. Furthermore, those who
have tried to publish negative or nonsignificant results may have been discouraged
or denied by well-intentioned peers or editors in the review process. As a con-
sequence, what gets published is inevitably not a random sample of studies that
were initiated, and we cannot escape the troubling conclusion that some—perhaps
many—cherished generalities are at best exaggerated in their biological signifi-
cance (80) and at worst a collective illusion nurtured by strong a priori beliefs
often repeated (33, 73).

Quasireplication likely exacerbates the problem of selective reporting. Authors
who explicitly set out to replicate a prior study fully will presumably have a
greater desire to publish their results—no matter what the outcome—than those
who pursue simply affirmative quasireplication. Quasireplication is still valuable
because results and hypotheses ultimately do need to be repeated in other systems
to assess their generality. But if quasireplication continues to substitute for formal
replication, the pernicious effects of selective reporting will do little more than
reinforce the contract of error that entrenches a priori beliefs or perpetuates the
unconstructive cycle of bandwagon and backlash (2, 84, 86, 96). Unfortunately,
editorial policies may contribute to the problem.
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The Impact of Editorial Policy

Editorial policies of many scientific journals appear to reinforce a culture in which
original research is valued more highly than replicative research, and in which
statistically significant results are favored over nonsignificant ones (26, 50). For
example, many journals explicitly discourage replicative studies either in their
advice to authors (Table 2a) or in their advice to reviewers (Table 2b). As a
consequence, because truly replicative research is so difficult to publish, biol-
ogists test the validity of hypotheses or patterns by examining other species or
systems.

In fairness, conspicuous examples of replicated studies are sometimes published
in premier journals. For example,Sciencereported a study (88) that was unsuc-
cessful at replicating the results of an earlier one, published inNature-Genetics,
claiming to have found microsatellite markers linked to human male homosexual-
ity (54). Sciencealso drew attention to the great difficulties different labs had at
obtaining the same results even in a highly controlled study of mouse behavioral
genetics, and concluded by saying “every result should be replicated with a new
batch of mice within the same lab, and perhaps elsewhere, before it’s published”
(34:1599). In these cases, however, conflicting results appeared to make better
press than confirmatory ones.

However, even strictly confirmatory results have been deemed of sufficient
importance byNatureto warrant publication, so long as the subject—Neanderthal

TABLE 2a Portions of instructions to authors from various journals

Journal Instructions to Authors

American Naturalist “[ American Naturalist] welcomes manuscripts that develop new conceptual
syntheses, especially those combining verbal or mathematical theory with
new empirical information of general significance.”

Ecology Articles:“Articles describing significant original research comprise the core
of the journal.”

Reports:“Reports are expected to disclose new and exciting work in a concise
format. These papers should present results that substantially advance a field
or overturn existing ideas.”

Notes:“Present significant new observations and methodological advances.”

Evolution “[W]ell-written papers that represent significant new findings, are of general
interest, and are placed in a general context are most likely to be published in
Evolution.”

J. of Animal Ecology “[P]ublishes the best in original research on any aspect of animal ecology.”

Nature “The initial criteria for a paper to be sent for peer-review are that the results
seem novel, arresting (unexpected or surprising), and that the work seems
broadly significant outside the field.”

Science “Is your paper one of the best you have ever produced? Will it have a big impact
in your field? Will scientists in related fields be interested in the results? Will
it surprise the reader? Does it overturn conventional wisdom?”
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TABLE 2b Portions of instructions to referees from various journals

Journal Instructions to Referees

American Naturalist Will this paper (score on a scale from 1−5):
“c. Pose a new and significant problem or introduce a novel subject to the

readership.
d. Change the way people think about the topic of the manuscript.
e. Confirm or refute an unverified theoretical principle or a previously unsupported/

weakly supported generalization.”

Ecology Rating of manuscript (numerical score): “Importance to our readers. Originality
of the research.”

Evolution “Does the paper contain new data or new ideas? (yes/no)”

Oecologia “First, is the science as such sound ... ? Second ... how do you rate its interest value to
Oecologia? We ... try to select papers which are not merely confirmatory, but make
some novel contribution ...”

Oikos (choose one) “1. Excellent, opens a new and significant area of research;
2. Very good. Makes a conceptual advance in an established field;
3. Good. Adds significantly to knowledge in an established field;
4. Could potentially reach standard 1 or 2 or 3 (indicate which) after revisions;
5. Sound but unexciting routine work that makes no significant contribution

to knowledge and no conceptual advance.”

Nature “If the conclusions are not original, it would be very helpful if you could provide
relevant references.”

Science “Priority is given to papers that reveal novel concepts of interdisciplinary interest”.
“In selecting papers for publication, the editors give preference to those papers
with novelty and general significance.”

DNA sequence (51)—had wide enough appeal. Is the implication here that few
data in ecology or evolution are so critical as to require verification?

How To Ameliorate the Impact of Quasireplication
and Selective Reporting?

What can be changed to reduce the effects of selective reporting and enhance
the stature of formal replicative research? Five changes—in increasing order of
difficulty to implement—would help.

(1) Journal Format One minor change to journal formats would have imme-
diate results and be easy to implement. A special category calledReplications,
in which only fully independent replications would be published, offers four ad-
vantages. First, it would give greater prominence to truly replicated studies and
would presumably encourage more biologists to conduct them. Second, it would
ensure that authors, referees, and editors all gave due recognition to the value of
formal replications. Third, it would place replicative studies in a defined area of
the journal so that readers interested only in novel or original research would not
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be distracted. Finally, if authors knew that others might attempt to replicate par-
ticularly striking claims because replicative studies were actually encouraged by
journals, they might be more cautious about rushing flashy but preliminary results
through to publication.

(2) Editorial Policy Regarding Replication Journal editorial policies could read-
ily be revised to recognize the value of replicate studies without them becoming
a burden to readers. Authors of replicate studies would be obliged to make the
case that the study being replicated was central to a developing generalization or
dogma, in the same way they are now obliged to make the case that their research
is original. Purely pedestrian replication of peripheral studies should garner no
more respect than purely pedestrian quasireplications.

(3) Editorial Policy Regarding Statistical Significance Journal editorial policies
could include two additional yardsticks for judging the robustness of a result: (a)
a quantitative sliding scale of statistical significance that depends on sample size,
and (b) a qualitative nonsignificance test.

The problem of selective reporting is a simple one: As sample size decreases,
an author’s decision to publish will be more and more influenced by the statistical
significance of the result. To discourage the publication of exploratory results that
happen to reach statistical significance due to chance, theα level for a result to be
considered statistically significant should be more extreme for small than for large
samples. For example, for a correlation coefficient, setα = 0.001 for sample sizes
less than 20, setα = 0.01 for sample sizes of 20–100, and retain the usual conven-
tion ofα = 0.05 for sample sizes exceeding 100. Such a rule would go a long way
toward reducing the publication of spuriously significant results based on small
sample size. What is considered a small sample size would depend on the type
of statistical test, but standard meta-analytic techniques (91) allow other statis-
tics to be converted to a common “effect size” (e.g., a correlation coefficient; 7)
for easier judgment.

In addition, referees and editors could apply a rough rule of thumb: the non-
significance test. The nonsignificance test would serve as a kind of litmus test of
the strength of a significant result: Is the hypothesis, and sampling or experimental
design, sufficiently robust that the results would seem worthy of publication if not
significant statistically? In other words, if the primary result was clearly nonsignif-
icant at P= 0.5, would the study still seem worthy of publication? If the answer
to the nonsignificance test was “yes,” then a weakly significant result would be
worth reporting. However, if the answer was “no,” then a weakly significant result
would seem dubious at best.

Both of these suggestions are related to power analysis, but retrospective power
analysis suffers from a number of problems (103) and seems unlikely to offer
a simple solution. A power analysis asks, If the parametric value of a statistical
descriptor for a particular population is truly nonzero, how often would it be found
to be significantly different from zero for a given sampling error and sample size?
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Unfortunately, retrospective power analyses—those asking about the power of a
final result—appear to offer no solution. First, for many statistics a result that is
just barely significant (e.g., P= 0.049) will always yield a power of approximately
0.5 because 50% of replicate samples from the same population would be higher
than this value (and thus significant statistically), and 50% would be lower (and
thus nonsignificant), no matter what the sample size. Because it is simply inversely
related to the original P value, retrospective estimates of power offer no additional
information (103). Second, the confidence intervals on estimates of power can be
large (103), thus rendering them uninformative.

(4) Undergraduate and Graduate Training Graduate program coordinators and
supervisors should consider encouraging graduate students, as part of a graduate
degree program, to conduct at least one formal replicative study. Clearly these
would have to be combined with original research so that students could also
demonstrate their creativity and ability to tackle novel problems. Here again,
a Replicationssection in premier journals would help legitimize and encourage
replicative research, and allow students to be recognized for a well-replicated study
as much as for a wholly novel one.

(5) Research Funding Priorities Research funding agencies could create a spe-
cial funding category calledCritical Replications. Not only would this reward
replicative research directly, it would also allow a registry of formally replicated
studies to be maintained. As in medical research (100), such registries ensure
that reviewers and meta-analysts could directly assess the magnitude of selective
reporting. In addition, such funding could be awarded with the condition that it
must be published before the same investigators would be eligible to apply for any
subsequent funding from theCritical Replicationsfund.

Is “True” Replication Possible?

Some will object that true replication of ecological or evolutionary studies is
not possible even in principle. Even where a study is replicated with the same
population of the same species using the same protocol, many other factors may
not be controllable (weather, genetic makeup of a population, population density of
the study organism or of other organisms that might affect the outcome of the study,
other historical effects, etc). These factors might also affect replications attempted
with a different population of the same species and therefore make interpretation
troublesome. This inability to truly replicate a previous study is, undoubtedly, a
significant problem.

But is this not precisely why replication is valuable in the first place—to judge
just how repeatable (and therefore presumably biologically significant) a result
is? Should we not care about how large the effect of uncontrolled variation is on
the magnitude or clarity of a particular cherished result? Although it may take
different forms, uncontrollable variation is a fact of life for all scientific research.
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Surely what matters is either (a) how repeatable a result is in the face of uncon-
trolled variation, or (b) how sensitive a result is to specific uncontrollable variables.
Clearly, “there is a vast amount of extra information available from repeated exper-
imentation (generality of circumstances; variation in intensity; consistency over
seasons, etc.)” (106a). The ineluctable variability of natural systems is a very real
and sometimes fascinating aspect of the biology. We ignore it at our peril.

Selective Reporting Among Replicated Studies

Will increased replication eliminate the problem of selective reporting? Of course
not. Those with a strong desire to confirm an earlier result will be more inclined to
report a positive than a negative outcome. Similarly, those with a vested interested
in contradicting a previous claim will be more inclined to publish contrary results.
Such biases, even among replicated studies, may be widespread in particularly
litigious areas [e.g., see the debate over the effects of second-hand smoke between
Givens et al (43) and commentators (14)].

Nonetheless, replicative studies, at the very least, provide some estimate of
the among-study variance—due both to genuine sampling error and to selective
reporting—that is inevitably present in the scientific enterprise. Quasireplication
will never allow the among-study variance to be separated from the among-taxon
or among-system variances. Furthermore, if effects are so weak as to yield contra-
dictory results in the hands of different investigators, perhaps it is time to acknowl-
edge that the phenomenon under study may be of little biological significance. For
example, the inability of multiple labs to obtain the same results with the same pro-
tocol when measuring the anxiety levels of the same strains of laboratory mice (34)
should clearly give serious pause to those who wish to study the genes responsible
for anxiety.

CONCLUSION

Few would dispute the enviable success that some disciplines in molecular biology
have achieved—a success anticipated over 25 years ago (85). Molecular biologists’
ability to weed out flawed methods or results via replication has undoubtedly
promoted this sustained success. Clearly, ecologists and evolutionary biologists
must face an ugly fact: Such success will elude our grasp until formal replication
of others’ work is embraced as a routine and respected element of research. As
Bacon (9) observed, “truth will sooner come out from error than from confusion.”

Quasireplication alone will not suffice. It is so vulnerable to selective reporting
that it will as likely reinforce trendy notions as it will strengthen genuine biological
generalizations. Without true replication we will never know which cherished
generalizations are valid and which are the unfortunate consequence of collective
wishful thinking re-enforced by an injudicious faith in statistics. Pity, eh?
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99. Soulé ME, Baker B. 1968. Phenetics of
natural populations. IV. The populations
asymmetry parameter in the butterfly
Coenonympha tullia. Heredity23:611–
14

100. Stern JM, Simes RJ. 1997. Publication
bias: evidence of delayed publication in a
cohort study of clinical research projects.
Br. Med. J.315:640–45

101. Strong DR. 1980. Null hypotheses in
ecology.Synthese43:271–85



P1: FXZ

September 16, 2000 20:47 Annual Reviews AR113-19

480 PALMER

102. Strong DR. 1983. Natural variability and
the manifold mechanisms of ecological
communities.Am. Nat.122:636–60

103. Thomas L. 1997. Retrospective power
analysis.Conserv. Biol.11:276–80

104. Thornhill R, Møller AP. 1998. The rel-
ative importance of size and asymmetry
in sexual selection.Behav. Ecol.9:546–
51

105. Thornhill R, Møller AP, Gangestad SW.
1999. The biological significance of
fluctuating asymmetry and sexual se-
lection: a reply to Palmer.Am. Nat.
154:234–41

106. Thornhill R, Sauer P. 1992. Genetic sire
effects on the fighting ability of sons and
daughters and mating success of sons
in a scorpionfly.Anim. Behav.43:255–
64

106a. Underwood AJ. 1999. Publication of so-
called ‘negative’ results in marine ecol-
ogy.Mar. Ecol. Prog. Ser.191:307–9

107. Van Dongen S. 1998. How repeatable is
the estimation of developmental stabil-
ity by fluctuating asymmetry?Proc. R.
Soc. Lond. B265:1423–27

108. Van Dongen S. 2000. The heritability
of fluctuating asymmetry: a Bayesian
hierarchical model.Ann. Zool. Fennici.
37:15–23

109. Van Dongen S, Lens L. 2000. The evo-
lutionary potential of developmental sta-
bility. J. Evol. Biol.13:326–35

110. van Schaik CP, Hrdy SB. 1991. Intensity
of local resource competition shapes the
relationship between maternal rank and
sex ratios at birth in cercopithecine pri-
mates.Am. Nat.138:1555–62

111. Van Valen L. 1962. A study of fluc-
tuating asymmetry.Evolution 16:125–
42

112. Vickers A, Goyal N, Harland R, Rees
R. 1998. Do certain countries produce

only positive results? A systematic re-
view of controlled trials.Contr. Clin. Tri-
als19:159–66

113. Vollestad LA, Hindar K, Moller AP. 1999.
A meta-analysis of fluctuating asymme-
try in relation to heterozygosity.Heredity
83:206–18

114. Wang MC, Bushman BJ. 1998. Using
the normal quantile plot to explore meta-
analytic data sets.Psychol. Meth.3:46–
54

115. Weatherhead P. 1983. Secondary sex ra-
tio adjustment in red-winged blackbirds
(Agelaius phoeniceus). Behav. Ecol. So-
ciobiol. 12:57–61

116. Weigensberg I, Roff DA. 1996. Natural
heritabilities: Can they be reliably esti-
mated in the laboratory?Evolution 50:
2149–57

117. Whitlock M. 1996. The heritability of
fluctuating asymmetry and the genetic
control of developmental stability.Proc.
R. Soc. Lond. B263:849–53

118. Whitlock M. 1998. The repeatability of
fluctuating asymmetry: a revision and ex-
tension.Proc. R. Soc. Lond. B265:1429–
31

119. Williams GC. 1979. On the question of
adaptive sex ratio in outcrossed verte-
brates.Proc. R. Soc. Lond. B205:567–80

120. Wilson EE. 1975.Sociobiology. Cam-
bridge, MA: Harvard Univ. Press

121. Woods RE, Hercus MJ, Hoffmann AA.
1998. Estimating the heritability of fluctu-
ating asymmetry in fieldDrosophila.Evo-
lution 52:816–24

122. Woods RE, Sgro CM, Hercus MJ, Hoff-
mann AA. 1999. The association between
fluctuating asymmetry, trait variability,
trait heritability, and stress: a multiply re-
plicated experiment on combined stresses
in Drosophila melanogaster. Evolution
53:493–505


