Key to Aquatic Mites Known from Alberta
(created by H. Proctor, July 2006)

Most illustrations have been redrawn by Heather Proctor from these two sources:

For a diagram of water mite anatomy and examples of male and female genitalia, see Appendix I.
For a list of taxa see Appendix II (including taxa that are not keyed but can be identified using sources cited above).

```
ACARI

4 pairs of legs

1 claw at tip (tarsus) of each leg; large anal opening (an); adults shiny, brownish, hemispherical; juveniles pale with long terminal setae

Oribatida: Hydrozetidae: *Hydrozetes* (there are a few other genera of aquatic oribatids that have 3 claws/tarsus; these also have large anal openings)

very small (< 1mm long), dorsoventrally flattened, diamond-shaped mites; bases of legs I and II widely separated from bases of legs III and IV

not this combination of features

Hydrachnidia (a.k.a. Hydrachnida, Hydracarina)

water mites in the strict sense

see Hydrachnidia key

3 claws per tarsus; palp with one long blunt terminal seta; soft, elongate mites from lotic substrates

Stygothrombioidea: Stygothrombiidae (also ‘Stygothrombiidae’): *Stygothrombium* (this superfamily is sometimes included in, and sometimes excluded from, the Hydrachnida)

3 pairs of legs

>1 claw per leg tarsus

larval mite – not identifiable further

2 claws per tarsus (at least on first two pairs of legs)

Halacaridae

(rarely recorded, but this may be due to small body size)

Stygothrombioidea: Stygothrombiidae (also ‘Stygothrombiidae’): *Stygothrombium* (this superfamily is sometimes included in, and sometimes excluded from, the Hydrachnida)

3 claws per tarsus; palp with one long blunt terminal seta; soft, elongate mites from lotic substrates

Halacaridae

(rarely recorded, but this may be due to small body size)

Hydrachnidia (a.k.a. Hydrachnida, Hydracarina)

water mites in the strict sense

see Hydrachnidia key
```
HYDRACHNIDIA

eyes very close together (~1 eye-width apart) on same sclerotized plate in middle of 'forehead'; soft-bodied; large red or orange mites

- eye-plate with long posterior projection; palps with terminal setae almost as long as palp tarsus; body clearly longer than wide
- eye-plate without posterior projection, shaped like a pair of eye-glasses; palps with terminal setae shorter than tarsus; body usually egg-shaped

Limnocharidae: Limnocharis

Eylaidae: Eylais (very common)

mites with gonopores (arrows in A1-C1 at bottom of page); often only 2 pairs of genital acetabula
- adults
- deutonymphs, may not be identifiable using this key

mites without gonopores (A-C at bottom of page); wide array of colours and degrees of sclerotization

examples of deutonymphal water mites (ventral)

A
B
C

examples of adult water mites (ventral)

A1
B1
C1

Hydrovolziidae: Hydrovolzia (rare)

dorsum
venter

see Hydrachnidia A
HYDRACHNIDIA A

last two segments of palp (tibia [ti] and tarsus [ta]) forming grasping pincer

e.g.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
</table>

but not when it is just an enlarged seta (s)

e.g.

see Hydrachnidia B

palp tibia projects dorsally and palp tarsus moves against it from below = “chelate palp” (see A above)

palp tibia projects ventrally, and palp tarsus moves against it from above = “uncate palp” (see B above left); well-sclerotized mites

3rd segment of palp (genu) clearly longer than palp tibia (see A above); usually with 1 or 2 large plates between eyes; 4th coxae much wider than other coxae; usually large, red, spherical mites

not this combination of features

3-4 pairs of genital acetabula in single row on either side of genital opening; male without elaborate posterior extensions of body

many pairs of acetabula on wing-like fields on either side of genital opening; male usually with elaborate posterior extension of body

Hydrachnidia:

Hydrachna (very common)

tips of palp tibia and tarsus long, slender and scissors-like; no dorsal plates; genital plates with >10 prs of genital acetabula

Hydroyphantidae: see family key

Hydrodromidae: Hydrodroma (very common)

tip not scissors-like; often with dorsal plates; usually only 3-4 pairs of acetabula

Hydrodromidae: see family key

Mideopsidae: Mideopsis (in part; not all species have clearly uncate palp)

e.g. males

Arrenuridae: Arrenurus (very common)

female
HYDRACHNIDIA B

Genital acetabula close together in 2 median rows, flanked or covered by movable genital flaps (gf); usually only 3-6 prs of genital acetabula

Genital flaps usually absent, but if they appear to be present the flaps are not movable but are fused to the body or the acetabula are on surface of flaps; often >>6 prs of acetabula

4th coxal plates encircling a pair of glandularia (gland openings)

4th coxal plates not encircling glandularia

When viewed laterally, all leg bases crowded at anterior end of body

Leg bases not crowded at anterior end of body

When viewed dorsally only thin strip of unsclerotized cuticle present, usually bearing narrow platelets

Broad unsclerotized dorsal area without narrow platelets

Frontipoda

Oxidae

Oxus

Teutoniidae: *Teutonia* (rare)

Sperchontidae (see family key)

Torrenticolidae (see family key)

Lebertiidae: *Lebertia* (very common)
HYDRACHNIDIA C

Tarsus of leg IV without claws, but may have a long subterminal seta (s); usually only 3 prs of genital acetabula (*Limnesia anomal* an exception); palp usually with seta on projection (p) on ventral side of palp femur.

Limnesiidae: *Limnesia* (very common)

Limnesia anomal

Dorsum completely or almost completely covered by a single large plate (= shield)

E.g.

Genital area extends anteriorly between 4th coxae; > 4 prs of acetabula; male with highly modified genital flaps

Mideopsidae: *Mideopsis* (in part)

Dorsum with 1 median plate and many smaller pairs of platelets; 2 prs of glandularia (gl) in a row between 4th coxae and genital area

Dorsum not completely covered by single large plate, though may have numerous platelets (a few species of *Feltria* with full dorsal shield in which case have glandularia arranged as described below)

Genital area not between 4th coxae, instead usually very close to end of body; 3-many prs of acetabula

Aturididae

(see family key)

Male genital area

Mideidae: *Midea* (uncommon)

Dorsum with 1 median plate and many smaller pairs of platelets; 2 prs of glandularia (gl) in a row between 4th coxae and genital area

Not this combination of features

see **Hydrachnidia D**

Tarsi of legs IV with claws

3-4 prs of genital acetabula arranged vertically in a single column on either side of gonopore; completely sclerotized mites

Acetabula not arranged this way; mites with various degrees of sclerotization

Mideopsidae: *Mideopsis* (in part)

Limnesiidae: *Limnesia* (very common)

Limnesia anomal

Genital area extends anteriorly between 4th coxae; > 4 prs of acetabula; male with highly modified genital flaps

Sexual area not between 4th coxae, instead usually very close to end of body; 3-many prs of acetabula

Aturididae

(see family key)

Male genital area

Mideidae: *Midea* (uncommon)

Dorsum with 1 median plate and many smaller pairs of platelets; 2 prs of glandularia (gl) in a row between 4th coxae and genital area

Not this combination of features

see **Hydrachnidia D**

Feltriidae: *Feltria* (common & diverse)

Ventral views: female (left) male (right)

Hydrachnidia D
HYDRACHNIDIA D

1. **ventral side of palp femur with a seta borne on a small projection (sp); 3 prs of genital acetabula; genital area between 3rd and 4th coxae**

2. **not this combination of features - do not mistake simple projection on palp femur (p) for seta on projection (see e.g. below)**

3. **Limnesiidae: Tyrellia (uncommon)**
 - claws and socket of leg I tarsus not obviously larger than those of other legs

4. **legs I and palps with thick, rigid setae borne on long tubercles and/or first coxae with long internal apodemes (a) that reach into 4th coxae or parasitic inside freshwater mussels; palp with at least one ventral projection on tibia**

5. **not this combination of features**

6. **Wettinidae: Wettina (uncommon)**
 - claws and socket of tarsus of leg I very large; acute medial angle of fusion of coxae III and IV

7. **Unionicolidae**
 - 1st coxal apodemes project into 4th coxae (see a above); usually ≥ 6 prs of genital acetabula
 - 1st coxal apodemes short; usually 5 prs of genital acetabula; female genital plates broken into 4 platelets; legs I often very long

8. **Hygrobatidae (see family key)**
 - a pair of glandularia (g) set in the 4th coxal plates (sometimes close to border with 3rd coxae); males never with modified 3rd or 4th legs

9. **no glandularia in 4th coxae; leg III and/or IV of male usually with strong modifications**

10. **Pionidae (see family key)**
 - e.g. male leg IV
FAMILY KEYS

HYDRYPHANTIDAE

legs with swimming setae on distal segments (see Anatomy figure in Appendix); large oblong or H-shaped plate between eyes

Hydryphantes

(the rare Pseudohydryphantes would also key here; it lacks the large plate between the eyes)

legs without swimming setae

3 prs of genital acetabula

> 3 prs of elongate genital acetabula; tarsal claws with comb-like serrations (s)

Protzia

body greatly elongated and worm-like; genital flaps poorly developed or absent; no obvious dorsal plates or platelets

Wandesia

genital field with well-sclerotized projections of genital flaps extending anterior to 1st pr of acetabula, bearing thick setae (s); usually with large median plate between eyes

Panisopsis

not worm-like, often has dorsal plates or platelets

no anterior projection of genital flaps bearing setae; with at most very small platelets between eyes

Thyas

NOTE: if you find a hydryphantid in Alberta that does not fit the key or match the illustrations, it may be one of the following rare genera:

(a) without dorsal plates or platelets: Notopanisus (has anterior extensions to genital flaps as illustrated for Panisopsis above), Albertathyas (no anterior extensions)

(b) dorsal platelets separated centrally but last pair fused to form single terminal plate: Panisus

(c) dorsal platelets fused to form large central plate or ‘doily-like’ network that may cover entire dorsum: Thyopsis (2nd pr of acetabula located distally at same level as 3rd pr), Thyopsella (2nd pr well anterior to 3rd, as illustrated above)
TORRENTICOLIDAE

one unpaired anterior-median platelet and more than 5 prs of lateral platelets

Testudacarus (rare)

1-2 prs of anterior-median platelets

base of mouthparts (capitulum) with long postero-dorsal projection (pdp) when viewed laterally (you must dissect off mouthparts in order to see this)

Monattractides

Torrenticola (very common)

SPERCHONTIDAE

glands and associated setae (glandularia) raised as large bumps covered with numerous smaller ‘warty’ projections; ventral sides of palp genu and tibia usually without projections

Sperchonopsis

glandularia usually not raised, but if raised then on smooth bumps; palp genu and/or tibia with 1-2 ventral projections

Sperchon (common)
HYGROBATIDAE

- Base of capitulum broadly fused to first coxae (arrow); little dorsal sclerotization; 3 or more prs of genital acetabula
- Capitulum not fused to first coxae (for e.g.’s see Pionidae illustrations next page); 3 prs of genital acetabula

- Numerous dorsal platelets; tibia and tarsus of leg I not modified; usually with ventral projection from palp femur
- Rarely with dorsal platelets; tibia of legs I with modified dorsal setae, and tarsus usually slightly bowed; palp femur without ventral projection

- Hygrobates
- Corticacarus
- Hygrobates

ATURIDAE

- >4 prs of small genital acetabula spread out along hind margin of body
- 3-4 prs of genital acetabula

- Aturus (common and diverse)
- Brachypoda (rare)

NOTE: other rare genera of aturids with 3 prs of acetabula known from Alberta are Estellacarus (differentiated from Brachypoda in having ridges extending posteriorly from insertions of hind legs), Woolastookia (differentiated from Estellacarus and Brachypoda in lacking a spinelike projection from palp femur), and Ljania (differentiated from others in having the posterior suture line of the 4th coxae curved in and around glandularia)
PIONIDAE

3 prs of genital acetabula

both sexes with extremely long and narrow palps; male with terminal posterior projection from genital field (= petiole)

not this combination of features (males only can be keyed from here on)

male petiole

Hydrochoreutes

male legs IV with genu greatly expanded and bearing many long setae with enlarged bases

Pseudofeltria (rare)

outer margins of coxae II and III each with a stout seta; male without leg modifications

male venter

Huitfeldtia (not yet recorded from Alberta)

male legs IV with genu at most only slightly expanded and bearing short unmodified setae (see Pionidae A)

no such setae (see Pionidae B)

Nautarachna (rare)

swimming hairs present on at least some leg segments (see Appendix I: anatomy); male leg III usually modified for sperm transfer

no swimming hairs on legs; no sexual dimorphism of male leg III

4 to many prs of acetabula
PIONIDAE A
(males only)

- **end of leg IV tibia with large hooked seta**
- **leg IV tibia without such a seta**

- **tarsus of leg IV curved with a row of thick peg-like setae on concave side**
- **tarsus of leg IV not modified in this way; has some flattened setae at end of tibia of leg IV**

Neotiphs (rare)

Pionacercus (not yet recorded from Alberta)

Pionopsis (rare)

PIONIDAE B

- **4th coxae approximately triangular in shape with pointed inner margin**
- **4th coxae with well-developed, long inner margins; genu of leg IV and claw of leg III highly modified in male**

Forelia

Piona (very common and diverse)
Appendix I: water mite anatomy

ventral view of a female *Limnesia*

Examples of female (left) and male (right) water mite genitalia:

top = *Hygrobates*, bottom = *Neumania*
Appendix II: List of water mite taxa known or suspected to occur in Alberta

with advice from Dr. Ian Smith (Agriculture Canada, Ottawa)

created 11 October 2002; modified 2 Aug 2006

This is a list of genera known or strongly suspected to be in Alberta. The numbers in brackets are Ian’s conservative estimate how many species are likely to be present - they are very provisional. “*” means that the genus is very common. “?” means that the genus has been collected within a few miles of the Alberta border and probably will turn up eventually. “NK” means not included in the Proctor (2006) flowchart key. Note that some genera are not in Clifford (1991). This is because (a) they were first collected from Alberta after 1991, or (b) the genus was described after 1991 (e.g. *Albertathyas* was discovered by Ian in 1998). Note that the family Stygothrombidiidae is sometimes not considered to belong to the Hydrachnidia.

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Species (Estimated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stygothrombidiidae</td>
<td>Stygothrombium (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrovolzia (1)</td>
<td></td>
</tr>
<tr>
<td>Limnocharidae</td>
<td>Limnochares (2)</td>
<td></td>
</tr>
<tr>
<td>Eylaidae</td>
<td>Eylais (5)</td>
<td></td>
</tr>
<tr>
<td>Hydrachnidae</td>
<td>Hydrachna (5)</td>
<td></td>
</tr>
<tr>
<td>Hydryphantidae</td>
<td>Hydryphantes (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albertathyas (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notopanisus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panisus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protzia (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyas (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyopsella (1)</td>
<td></td>
</tr>
<tr>
<td>Hydrovolziidae</td>
<td>Hydrovolzia (1)</td>
<td></td>
</tr>
<tr>
<td>Limnocharidae</td>
<td>Limnochares (2)</td>
<td></td>
</tr>
<tr>
<td>Eylaidae</td>
<td>Eylais (5)</td>
<td></td>
</tr>
<tr>
<td>Hydrachnidae</td>
<td>Hydrachna (5)</td>
<td></td>
</tr>
<tr>
<td>Hydryphantidae</td>
<td>Hydryphantes (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albertathyas (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notopanisus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panisus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protzia (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyas (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyopsella (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyopsis (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wandesia (1+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudohydryphantes (1)</td>
<td></td>
</tr>
<tr>
<td>Hydrodromidae</td>
<td>Hydrodroma (1)</td>
<td></td>
</tr>
<tr>
<td>Sperchontidae</td>
<td>Sperchon (15+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sperchonopsis (5)</td>
<td></td>
</tr>
<tr>
<td>Teutoniidae</td>
<td>Teutonia (1)</td>
<td></td>
</tr>
<tr>
<td>Anisitsiellidae</td>
<td>Bandakia (1+) NK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utaxatax (1) NK</td>
<td></td>
</tr>
<tr>
<td>Lebertiidae</td>
<td>Estelloxus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lebertia (20+)</td>
<td></td>
</tr>
<tr>
<td>Oxidae</td>
<td>Frontipoda (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxus (2+)</td>
<td></td>
</tr>
<tr>
<td>Torrenticolidae</td>
<td>Monoatractides (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testudacarus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Torrenticola (15+)</td>
<td></td>
</tr>
<tr>
<td>Limnesiidae</td>
<td>Limnesia (5+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tyrrellia (1)</td>
<td></td>
</tr>
<tr>
<td>Hygrobatidae</td>
<td>Atractides (10+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corticacarus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hygrobatis (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mesobates (?) NK</td>
<td></td>
</tr>
<tr>
<td>Feltriidae</td>
<td>Feltria (15+)</td>
<td></td>
</tr>
<tr>
<td>Unionicoliidae</td>
<td>Neumania (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unionicola (2)</td>
<td></td>
</tr>
<tr>
<td>Wettina</td>
<td>Wettina (1)</td>
<td></td>
</tr>
<tr>
<td>Pionidae</td>
<td>Hydrochoreutes (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pionacerus (?)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudofeltria (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forelia (1+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huifeldia (?)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neotiphys (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pionopsis (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiphys (1+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nautarachna (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piona (10+)</td>
<td></td>
</tr>
<tr>
<td>Aturidae</td>
<td>Brachypoda (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estellacarus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Woolastookia (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ljania (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aturus (10+)</td>
<td></td>
</tr>
<tr>
<td>Momingonidae</td>
<td>Stygomonomia (1) NK</td>
<td></td>
</tr>
<tr>
<td>Mideidae</td>
<td>Midea (1)</td>
<td></td>
</tr>
<tr>
<td>Nudomideopsidae</td>
<td>Paramideopsis (1) NK</td>
<td></td>
</tr>
<tr>
<td>Mideopsidae</td>
<td>Mideopsis (5)</td>
<td></td>
</tr>
<tr>
<td>Chappuisiidae</td>
<td>Morimotacarus (1) NK</td>
<td></td>
</tr>
<tr>
<td>Athienemannidae</td>
<td>Plathydracarus (1) NK</td>
<td></td>
</tr>
<tr>
<td>Acalyptonotidae</td>
<td>Acalyptonotus (1) NK</td>
<td></td>
</tr>
<tr>
<td>Laversiidae</td>
<td>Laversia (1) NK</td>
<td></td>
</tr>
<tr>
<td>Arrenuridae</td>
<td>Arrenurus (20+)</td>
<td></td>
</tr>
</tbody>
</table>