# **General Digital Image Utilities in ERDAS**

These instructions show you how to use the basic utilities of stacking layers, converting vectors, and sub-setting or masking data for use in ERDAS Imagine 9.x software. The workflow outlined below is a typical one that you may need to follow when preparing/preprocessing your data for multispectral visualization and analyses:

- 1. Create a multiband composite of single band imagery this is a Layer Stack
- 2. "Clip" out a smaller portion of the imagery this is a Subset
- 3. **Convert** vector to raster (to use in the next step)
- 4. Extract an irregular-shaped polygon study area from the imagery this is an alternative to subset and involves applying a **Mask**

Some handy resources:

- FieldGuide.pdf and TourGuide.pdf
   C:\Program Files\Leica Geosystems\Geospatial Imaging 9.1\help\hardcopy
- Webinars (i.e. pre-recorded web seminars) <u>http://www.erdas.com/Resources/Webinars/ArchivedWebinars/tabid/175/Default.aspx</u>
- Free Landsat data! (e.g. search the Landsat Archives for L4-5 TM) <u>http://edcsns17.cr.usgs.gov/cgi-bin/EarthExplorer/phtml/EarthExplorer.phtml</u>)

 $\checkmark$  If you haven't already done so, unzip the individual TIFF files to your working directory.

## ORIGINAL DATA

| L5_B10.tif, L5_B20.tif, | TIFF image files of single band imagery |
|-------------------------|-----------------------------------------|
| L5_B30.tif, L5_B40.tif, |                                         |
| L5_B60.tif, L5_B70.tif, |                                         |
| StudyArea.shp           | a polygon shapefile of your study area  |

## **CREATED DATA**

| L5_all.img    | ERDAS IMAGINE image file                           |
|---------------|----------------------------------------------------|
| StudyArea.img | raster of study area converted from vector polygon |
| L5_subset.img | image resulting from the subset tool               |
| L5_study.img  | image resulting from the mask tool                 |

# Start ERDAS with the Geospatial Light Table (GLT) Viewer:

1. Click START >>> PROGRAMS >>> LEICA GEOSYSTMES >>> ERDAS IMAGINE >>> ERDAS IMAGINE

2. Select the option to use the Geospatial Light Table (GLT)

You won't actually add any data to this yet... first look for the Main Menu toolbar:

| 1 ERDAS IMAGINE 9.1                                 |                                        |                     |
|-----------------------------------------------------|----------------------------------------|---------------------|
| Session Main Tools Utilities Help                   |                                        |                     |
| Viewer Import DataPrep Composer Interpreter Catalog | Cassifier Modeler Vector Radar Virtual | GIS Stereo RutoSync |

## From the Main Menu bar:

## Create layer stack - a.k.a. multiband image



- Interpreter Click INTERPRETER >>> 1. UTILITIES >>> LAYER STACK
- 2. Click the browse button (open folder icon) and navigate to the working directory of your TIFF files

TIP: While the directory is open to your working directory, click the directory preference button (open folder with a star icon). This sets the current folder to automatically open in all other data navigation tasks.

| Input Fil     | le:                                                |           | ×      |
|---------------|----------------------------------------------------|-----------|--------|
| File M        | 1ultiple                                           | X         |        |
| Look in: 🥳    | 20091125                                           | - 🗈 💣 🕷 😣 |        |
| 🛃 L5043       | 025_02520090820_B10.TIF                            |           | OK     |
| L5043 🙀 L5043 | 025_02520090820_820.TIF<br>025_02520090820_830.TIF |           | Cancel |
| 🛃 L5043       | 025_02520090820_B40.TIF                            |           | Help   |
| L5043         | 025_02520090820_850.TIF<br>025_02520090820_860_TIF |           |        |
| L5043         | 025_02520090820_B70.TIF                            |           | Recent |
|               |                                                    |           | Goto   |
|               |                                                    |           |        |
|               |                                                    |           |        |
| File name:    | L5043025_02520090820_B10.TIF                       |           |        |
| Files of typ  | e: TIFF                                            | ▼ *       |        |
| greyscale :   | 7 Intergraph CCITT Group 4 (*.cit)                 |           |        |
|               |                                                    |           |        |
|               | MrSID (*.sid)                                      |           |        |
|               | NITF<br>ORACLE GeoRaster (*.ogr)                   |           |        |
|               | PCIDSK (*.pix)                                     |           |        |
|               | RAW (*.raw)                                        |           |        |
|               | RPF Cell<br>BPF Frame                              |           |        |
|               | RPF Overview                                       | _         |        |
|               | RPF TOC (*.toc)                                    |           |        |
|               | SPOT DIMAP (*.dim)                                 |           |        |
|               | Sub-Image (*.sbi)                                  | =         |        |
|               | TARGA (*.tga)                                      |           |        |
|               | TIFF                                               |           |        |
|               | Virtual Mosaic (*.vmc)                             |           |        |
|               | Virtual Stack (*.vsk)                              | *         |        |



💆 Image Interpreter

**GIS Analysis** 

Utilities ..

Close

NOTE: The Recent and Goto buttons in many of the dialogs help you more efficiently locate the files or directories you commonly work.

3. In the Files of Type drop-down list, select TIFF

4. Select the first file (e.g. starts with L5 and ends with B10.TIF) and click OK

5. In the Layer Selection and Stacking Dialog click the ADD button

6. Repeat clicking the browse button, selecting the next TIFF file, clicking OK, and clicking ADD

UofA Biological Sciences – GIS

- 7. Do NOT add the \*B60.TIF this thermal spectrum file has different spatial resolution than the others
- 8. Name this output **L5\_all.img**
- 9. Click OK
- 10. Once the job state dialog indicates 100% done, click OK

| 💯 Modeler - running model: layermerge.pmdl |             |  |
|--------------------------------------------|-------------|--|
| Job State:                                 | Done        |  |
| Percent Done:                              | 100% 0 100  |  |
|                                            | Cancel Help |  |

# Subset to smaller rectangular portion of image

First you need to know the <u>extent</u>. You may use ArcMap to examine

the study area shapefile layer properties. The source tab indicates the upper left and lower right corner coordinates for use in subsetting. Alternatively, use ERDAS' Vector info tool as described below:

💯 Layer Selection and Stacking

Input File:

-

Unsigned 8 bit

ΟK

Cancel

**E** 

c:/workspace/\_research/chrisc/20091125/I5043025\_02520090820\_b30.tif(1) c:/workspace/\_research/chrisc/20091125/I5043025\_02520090820\_b40.tif(1) c:/workspace/\_research/chrisc/20091125/I5043025\_02520090820\_b50.tif(1)

c:/workspace/\_research/chrisc/20091125/I5043025\_02520090820\_b70.tif(1)

Batch

View.

L5\_all.img

Output:

15043025\_02520090820\_b70.tif

Layer: 1

Add

Data Type: Input:

Output Options:

O Union C Intersection

| 💋 VectorInfo: s                | tudyarea.shp            |                           |
|--------------------------------|-------------------------|---------------------------|
| <u>File E</u> dit <u>H</u> elp |                         |                           |
| 6061                           | <b>1</b>                |                           |
| General Projection             | 1                       |                           |
|                                | Ares: 0                 | Polygons: 1               |
|                                | Segments: unknown       | Poly. Topology: Present   |
| Arcs,Polygons:                 | Arc Attr. Data: 0 bytes | Poly Attr. Data: 26 bytes |
|                                | Status: Normal.         |                           |
|                                | Nodes: 0 bytes          | Label Points: 0 Tics: 0   |
| Other Features:                | Node Attr. Data:        | Point Attr. Data: 0 bytes |
| Tolerance:                     | Fuzzy: 9.6 Verified     | Dangle: 9.6 Verified      |
|                                | Xmin: 574303            | Ymin: 5.57615e+006        |
| Boundary:                      | Xmax: 581023            | Ymax: 5.58575e+006        |
|                                | Georeferenced to: UTM   |                           |
| Projection Info:               | Spheroid: WGS 84        | Datum: WGS 84             |
|                                | Zone Number: 11         | Map Units: meters         |
| Opens a vector cove            | rage for descriptions   |                           |

NOTE: ArcMap layer properties source tab retains full coordinate values and conveniently allows you to copy and paste from the dialog! If you would like a dialog that allows you to copy and paste actual coordinate values, open the vector file in the Vector to Raster tool (see below for its intended use).

#### 27 November 2009

Output File: (\*.img)

Unsigned 8 bit

Ignore Zero in Stats.

AOL.

Help

11. In the ERDAS main menu bar, choose TOOLS >>> VECTOR

12. Click the File Open button (open

folder icon) and navigate to your working directory 13. In the Files of Type drop-down list,

StudyArea.shp and click

boundary coordinates in to a text editor (e.g. Notepad or Word)

dialog, record the

15. In the Vector Info

INFORMATION

select \*.shp 14.Select

OK

- O X

**>** 

^

≣

v

-

Clear

UofA Biological Sciences – GIS

| UUIA DIUlUyical Sciences – GIS                        |                                                                                       |                    | 271            | November         | 2003     |
|-------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------|----------------|------------------|----------|
| 16. In the UTILITIES panel click SUBSE                | T (i.e.<br>SUBSET)                                                                    |                    | Subse          | et               |          |
| 17. Select the input file: 1.5 all img                | UDDET)                                                                                |                    |                |                  |          |
| 18 Name this output L5 subset.img                     | 💯 Subset                                                                              |                    |                |                  |          |
| 19. Define the corners:                               | Input File                                                                            | e: (*.img)         | Uutpu          | it File: (*.img) |          |
| 20. UL X: 574303                                      | i5_aii.img                                                                            | <u> </u>           |                |                  | <u> </u> |
| 21.UL Y: 5585753                                      | Coordinate Type:                                                                      | Subset Definition: |                | From Inquire     | Вох      |
| 22.LR X: 581023                                       | G Mad                                                                                 | Two Corners        | C Four Corners |                  |          |
| 23.LR Y: 5576153                                      | C File                                                                                | 574202.00          |                | 591022.00        | _        |
| 24. Confirm all other settings – for                  | , rie                                                                                 |                    |                | 5570153.00       |          |
| example, notice that you can                          |                                                                                       | ULY: 5080753.0     |                | 0076103.00       |          |
| optionally select layers and                          |                                                                                       | UR X: 581023.0     | ) 🚊 LL X:      | 574303.00        | ×        |
| change data type                                      |                                                                                       | UR Y: 5585753.1    | 0 🛓 LL Y:      | 5576153.00       | *<br>*   |
| 25. Click OK                                          | Data Type:                                                                            |                    |                |                  |          |
| 26. Once the job state dialog indicates               | Input: Unsigne                                                                        | d 8 bit            |                |                  |          |
| 100% done, click OK                                   | Outout: Unsigne                                                                       | ed 8 bit           | Output: Cont   | tinuous          | -        |
|                                                       |                                                                                       |                    | Joon           |                  |          |
| Convert study area vector to raster                   | Output Options:                                                                       |                    |                |                  |          |
| Vector To Raster                                      | Number of Input lay                                                                   | ers: 6             | Ignore Zero ir | n Output Stats.  |          |
| 27. In the UTILITIES panel click                      | Select Layers: 1:6                                                                    |                    |                |                  |          |
| VECTOR TO RASTER (i.e.                                | Use a comma for separated list(i.e. 1,3,5 ) or enter ranges<br>using a "" (i.e. 2-5.) |                    |                |                  |          |
| INTERPRETER >>> UTILITIES                             | using a . (i.e. 2.3).                                                                 |                    |                |                  |          |
| >>> VECTOR TO RASTER                                  | ОК                                                                                    | Batch A0           | I Canc         | el He            | :lp      |
| 28. Specify the input vector (in this                 |                                                                                       |                    |                |                  |          |
| example, use Files of Type: .snp)                     | <u> </u>                                                                              | 2 Sot the ou       |                | sizo fo          | <br>r    |
| 1/2/ Vector to Raster                                 |                                                                                       | orocessed I        | andsat da      | ata this i       | <b>c</b> |
| Input Vector File: (*.shp) Output Image File: (*.img) | typic                                                                                 | ally 30 x 30       | and at ut      |                  | 5        |
| studyarea.shp                                         |                                                                                       | E: The inpu        | t vector fil   | e proiec         | tion     |
| Vector Type: Polygon  Data Type: Unsigned 8 bit       | - syste                                                                               | m will deter       | mine the       | raster u         | nits,    |
| Use Attribute As Value:                               | as w                                                                                  | ell as the ou      | itput raste    | er project       | tion     |
|                                                       | <mark>– in t</mark>                                                                   | his example        | it is UTM      | 1 meters         |          |
| Inone Ignore Zero in Stats.                           | Υοι                                                                                   | ur study are       | ea vector      | layer m          | ust      |
| Size Definition: From Inquire Box                     | be                                                                                    | in the same        | e coordin      | ate syst         | tem      |
| ULX 574303.37 ILX 5585753.77 I                        |                                                                                       | as you             | ır imager      | y!!!             |          |
|                                                       | It not                                                                                | , project you      | ur vector o    | data             |          |
| LR X:  581023.37 🔂 LR Y:  55/6153.77                  | appro                                                                                 | opriately (e.      | g. in the G    | SIS SOIT         | vare)    |
| Cell Size: Units: Meters                              |                                                                                       | Conversion         | OUTOUT IN      | AS.<br>Dogo filo | 00       |
| X: 30.00 → Y: 30.00 → Square Cells                    | Stud                                                                                  | vAroa ima          | s output in    | lage lile        | as       |
| 1 sug 1/ (dbc 225 1 sug 1/ site 321                   |                                                                                       |                    | the vector     | r data vo        |          |
|                                                       | conv                                                                                  | ert contains       | attributes     |                  | ed to    |
| OK Batch A0I                                          | retair                                                                                | n. then chec       | k the 'Use     | e Attribu        | te As    |
| Cancel View Help                                      | Value                                                                                 | a' hoy and s       | elect the      | name fro         |          |

ccn@ualberta.ca

the drop down box.

27 November 2009

Mask ...

Input Mask File: (\*.img)

Setup Recode .

Unsigned 8 bit

Unsigned 8 bit

Zero's Indicate excluded Area.

Output: Unsigned 8 bit

AOL.

Help

**D** 

-

studyarea.img

Data Type:

Input #1:

Input #2:

æ,

۵

Batch

View.

## 31. Click OK

32. Once the job state dialog indicates 100% done, click OK

## Mask the image using the raster study area

- 33. In the UTILITIES panel click MASK (i.e. INTERPRETER >>> UTILITIES >>> MASK)
- 34. Specify the input file: L5\_all.img
- 35. Specify the input mask file: studyarea.img
- 36. Choose the window default: Intersection
- 37. Name this output L5\_study.img
- 38. Check to 'Ignore Zero in Output Stats'
- 39. Click OK
- 40. Once the job state dialog indicates 100% done, click OK

## Close tool panels

41. Click the CLOSE

Ignore the zero value for statistics in the output file.

button on the Utilities and Image Interpreter panels when finished with them

🕖 Mask

15\_all.img

15\_study.img

Input File: (\*.img)

Window:

Output File: (\*.img)

0K

Cancel

C Union 💽 Intersection

🔽 Ignore Zero in Output Stats.

# Visualize the image files:

This can be done at any time! If you want to view a single TIFF file, then substitute it for the file name below – likewise for the L5\_all.img and StudyArea.img. The following shows you how to simultaneously view the subset and masked images.



- 42. In the GLT Viewer interface, click the OPEN LAYER button (open folder icon) and navigate to your working directory
- 43. Select L5\_subset.img
- 44. In the Spectral control select Landsat 5 TM and TM False Natural Color IR (try the others, too)

45. Click the Display button for 'Display Two Viewers'

- 46. Click the top header band of Viewer #2 to activate it will appear dark grey when active
- grey when active 47. Click the OPEN LAYER button and navigate to your working directory

Landsat 5 TM - 6 B 🗸 🔻 🖪 5

TM False Natural C 💌 G 4 💌

- 48. Select L5\_study.img
- 49. In the multispectral control select TM Desert Detail 1 (or your preference)
- 50. Experiment with the enhance, rotate, roam, and other tools

-

B 3 👻

Display

## Handy GLT file tools

- 1. Use the zoom and pan tools to interact with your visualization
- 2. Click FILE >>> SAVE >>> SAVE GLT SESSION to create a \*.glt file to open in a future GLT session saves all the settings you have applied to your imagery
- 3. Once you have an image band combination you like, click FILE >>> VIEW TO IMAGE FILE this creates a new \*.img file from the active viewer of that specific band combination in 3-band RGB (handy for sharing with other software applications and people)
- 4. Try out the image link tool...
- 5. Click the Link or Unlink Two Viewers Geographically button
- 6. Click in the inactive viewer window
- 7. Now, when you zoom in/out on one image the other shows an extent rectangle
- 8. Click and drag the extent rectangle to pan the zoomed-in viewer
- 9. Try out layering and swiping...
- 10. Select the Reset Windows Tools button and click and drag an image from one Viewer #2 in to Viewer #1 this visually overlays one image layer over another
- 11. Right-click anywhere inside Viewer #1 and click on SWIPE (also accessible via UTILITY >>> SWIPE)
- 12. Click and drag the swipe position bar to reveal/hide the layer below

| Viewer #1 | 💯 Viewer Swipe                            |                        |
|-----------|-------------------------------------------|------------------------|
|           | Swipe Position:                           |                        |
|           |                                           |                        |
|           | Direction:                                | Automatic Swipe:       |
|           | <ul> <li>Vertical C Horizontal</li> </ul> | Auto Mode Speed: 300 📩 |
|           | T Movie                                   |                        |
|           |                                           | Image Name             |
|           | 1 I5_study.img                            |                        |
| S A B     | 2I5_subset.img                            |                        |
|           |                                           |                        |
|           |                                           |                        |
|           | M > M > I +                               | t t t                  |
|           | Cancel                                    | Help                   |

- 13. Click the check box for MOVIE and then click the PLAY button (green triangle)
- 14. If you close the Viewer and wish to open it again, then in the ERDAS menu bar, click MAIN >>> START IMAGINE VIEWER

Now you have several layer stacks that are GIS-ready multiband images and available as input for future image processing – calculating vegetation indices, transformations such as PCA, and unsupervised and supervised classifications. Hopefully, the ERDAS interface has become more familiar to you, too.