Calculating Proportion of Different Classes within Multiple Polygons in ArcView 3.2

This instruction set shows you how to calculate how much of each home range polygon is made up of each fire age class. In the example given here, kernel home range polygons and multi-date fire polygon coverages are the original data themes provided for the intersection and areal calculation to answer the following question:

What proportion of each home range polygon is made up of different age classes of habitat (based on fire year)?

The cartographic model depicts the previous GIS functions (in light gray) performed to obtain the combined fire and home range layers.

These instructions may be adapted for any application where you need to find out the area of polygons where themes intersect, but apply specifically to obtaining the proportion of burn areas within home range polygons. The following is meant to guide you through the fivestep process of obtaining the area, using ArcView and the appropriate extensions:

A. Overlay/merge all fire layers (most recent on top) and overlay/merge all home range polygons – previously completed

- B. Overlay/intersect merged fire layers with home range polygons
- C. Add area and perimeter (or calculate more spatial statistics using Patch Analyst)
- D. Export table as .dbf to do calculations in Excel

It is assumed that you are already familiar with basic GIS functions in ArcView and that you have already assembled your combined fire and home range layers.

The example file names used here are:

ORIGINAL DATA THEMES

Allfiresupto2001.shp	a polygon shapefile containing the merged fire
All_season1_lscvkernels.shp	a shapefile containing the intersected home
	Tange Kerner polygons for season i

CREATED DATA THEMES

Fire_HR.shpa polygon shapefile resulting from the intersection of
Allfiresupto2001.shp and All_season1_lscvkernels.shp

A. Overlay/Merge All Fire Layers (most recent on top) and Overlay/Merge All Home Range Polygons – previously completed using the Geoprocessing Wizard

It is assumed that you have already assembled your combined fire and home range layers. See Part B for a reminder on how the Geoprocessing Wizard works.

- 1. Establish your ArcView project (i.e. add the required data themes to a View, set the map and distance units in View Properties, etc.)
- Choose FILE → EXTENSIONS and add the following extensions: Geoprocessing Wizard Patch Analyst

B. Overlay/Intersect Merged Fire Layers with Home Range Polygons

- 1. Choose VIEW → GEOPROCESSING WIZARD...
- 2. Select Intersect two themes; Click Next
- 3. Select Allfiresupto2001.shp as the input theme and All_season1_lscvkernels.shp as the overlay theme
- 4. Click OK
- 5. Specify a directory and name for the new polygon theme that will be generated (e.g. **Fire_HR.shp**); Click Finish

C. Add Area and Perimeter (or Calculate More Spatial Statistics Using Patch Analyst)

- 1. Make Fire_HR.shp the active theme
- 2. Choose PATCH → ADD AREA AND PERIMETER...
- 3. Open the theme's table to view the added Area_ field

Alternatively, you may have Patch Analyst calculate many different spatial metrics. To automate this, you will first need to create separate shapefiles for each home range.

- 1. Make Fire_HR.shp the active theme
- 2. Choose THEME \rightarrow QUERY...

🧟 Fire_HR.shp			×
Fields	Values		
[Area_] -	<>> and 9502	-	
Hud	>= 07 9503		
	9504		-
	Sto7		
[Area]	0 9509		
(Probabili)	🔽 Updab	e Values	
[][Colar]= \$5021	-	Rev Sel	3
31 N N		1000 V V	4
		Add To Set	
	8		-0

- 4. Choose THEME → CONVERT TO SHAPEFILE...
- 5. Give this new theme a name (e.g. **9502_season1.shp**)
- 6. <u>Repeat 1 through 4</u> for all home range collar values until you have all your home ranges in separate themes
- 7. Choose THEME → CLEAR SELECTED FETAURES
- 8. Make ALL the newly created themes active
- 9. Choose PATCH \rightarrow SPATIAL STATISTICS
- 10. Highlight one of the Themes in the first box
- 11. Select Field = "Year"
- 12. Click on "Class" (and/or Landscape)
- 13. Select only the metrics you want calculated (e.g. CA, TLA)

25 September 2001

UofA Biological Sciences – GIS

Themes		
9505.shp		-
9504.shp		
9503 shp		1
Cibos Year	*	Add Patch Analyse theme to view
Analyze By C Landscape	@ Dass	Advanced
Output Table Name		G ameri
Spatial Statistics Output		C Overwrite
🔽 Class Area	Channel Martine	Free Association
Total Landscape Area	Chape Merrica	Total Core Alles
Patch Density & Size Metrics	Augusticated Maga Shape Index	E Constant Density
No. of Palobes	Mean Perimeter Area Ratin	
Mean Patch Size	Mean Patch Fractal Dimension	
Median Patch Size Ratch Size Coefficient of Variance	Area Weighted Mean Patch Fractal Dimension	
Patch Size Standard Deviation	Diservity Matrice	
Edge Metrics	Shannan a Diversity lades	
Total Edge	Shannari's Evenness Index	
Edge Density		
Mean Patch Edge		
		12 IN 1932 W
	Select None Select Al	Cancel C.Batab. DK
Popost 8 through 1	2 until vou havo ad	ded all the themes
epear o iniougn i	<u>z</u> unui you nave au	

D. Export Table as .dbf to do Calculations in Excel

- 1. Make the Spatial Statistics Output Table active
- 2. Choose FILE \rightarrow EXPORT...
- 3. Select your preferred export format (dBASE, INFO table, Delimited Text)
- 4. In the next menu assign a directory and name for the table file that will be generated; Click OK

Bring this file into Excel (or other statistical software package) where you can calculate the percentage of burn class each home range e.g. Area_/ Area X 100%, where Area_ is the added area from Patch Analyst and Area is the original area of the home range kernel

Note: If you did not combine the Alberta boundary polygon with your merged fire layer, then remember to sum the fire classes for each home range and subtract this number from the total area of the home range polygon to obtain the unburned area.

e.g. Unburned = Area_m - S Area_{_mn}

where *m* denotes the particular collar and *n* denotes the fire year class.