Molecular evidence for a terrestrial origin of snakes

Nicolas Vidal and S. Blair Hedges
NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA

*Author for correspondence (sbh1@psu.edu).

Biologists have debated the origin of snakes since the nineteenth century. One hypothesis suggests that snakes are most closely related to terrestrial lizards, and reduced their limbs on land. An alternative hypothesis proposes that snakes are most closely related to Cretaceous marine lizards, such as mosasaurs, and reduced their limbs in water. A presumed close relationship between living monitor lizards, believed to be close relatives of the extinct mosasaurs, and snakes has bolstered the marine origin hypothesis. Here, we show that DNA sequence evidence does not support a close relationship between snakes and monitor lizards, and thus supports a terrestrial origin of snakes.

Keywords: evolution; phylogeny; reptiles; squamates; lizards; mosasaurs

1. INTRODUCTION


ACCORDING TO THE TERRESTRIAL HYPOTHESIS, THE CHARACTERISTICS THAT DEFINE SNAKES WERE ACQUIRED IN ANCESTORS THAT WERE BURROWING OR SEMI-BURROWING (WALLS 1940). A CLOSE


2. METHODS
WE USED SEQUENCES FROM TWO PROTEIN-CODING NUCLEAR GENES, RECOMBINATION-ACTIVATING GENE 1 (RAG1) AND OOCYTE MATURATION FACTOR (C-MOS), OBTAINED FROM ALL 19 FAMILIES OF LIVING LIZARDS AND AMPHIBIANS (ZUG ET AL. 2001) AND 17 OUT OF THE 25 FAMILIES OF LIVING SNAKES (VIDAL & HEDGES 2002B). THE USEFULNESS OF C-MOS FOR RESOLVING INTERFAMILIAL SQUAMATE RELATIONSHIPS IS well known (SAINT ET AL. 1998; VIDAL & HEDGES 2002B), ALTHOUGH RAG1 has until now never, to our knowledge, been sequenced in squamate reptiles despite its potential for resolving various higher-level vertebrate relationships (VENKATESH ET AL. 2001). MAXIMUM-LIKELIHOOD (ML), BAYESIAN INFERENCE, MINIMUM EVOLUTION (ME) AND MAXIMUM-PARSIMONY (MP) METHODS WERE USED TO ANALYSE THE RAG1 AND C-MOS SEQUENCES OF 64 SPECIES, BOTH SEPARATELY AND COMBINED. DETAILS OF THE SAMPLES USED, METHODS FOR OBTAINING AND SEQUENCING THE DNA AND METHODS OF PHYLOGENETIC ANALYSIS ARE DETAILLED IN ELECTRONIC APPENDIX A, AVAILABLE ON THE ROYAL SOCIETY’S PUBLICATIONS WEB SITE.

Figure 1. (Caption overleaf.)
3. RESULTS

The resulting phylogenetic trees show remarkable consistency among different methods of analysis (figure 1; electronic Appendix A). Snakes are monophyletic and the basic division of Scolecophidia and Alethinophidia is retrieved. Relationships within snakes are similar to that seen in more focused analyses of snake phylogeny with additional genes (Vidal & Hedges 2002a,b). Among lizards, the Gekkonidae (including gekkonines and limbless pygopodinines) is monophyletic. The large infraorder Iguania (Agamidae, Chamaeleonidae, Iguanidae) also forms a single clade in all analyses except ML. Other significant groupings are Anguimorpha (Varanidae, Helodermatidae, Xenosauridae, Anguidae), a cluster containing Teiidae, Gymnophthalmidae and Lacertidae with the four families of amphisbaenians (Amphisbaenidae, Trogonophidae, Bipedidae and Rhineuridae), and another group containing Cordylidae, Xantusiidae and Scincidae. The Dibamidae (‘blindskinks’) are the closest relatives of the Scincidae in the ME and ML trees, while they appear as a basal lineage in the MP and Bayesian trees (see electronic Appendix A).

Our results (figure 1) show that Varanus is allied with the remaining anguimorph lizards (Helodermatidae, Xenosauridae and Anguidae) to the exclusion of snakes (support values for the ML, MP, ME and Bayesian analyses are 98, 95, 98 and 100, respectively). Our phylogeny also rejects the association of snakes and amphisbaenians (support values of 95, 85, 79 and 100). The clustering of snakes with iguanian lizards (figure 1) is not strongly supported, but is curious because of their presumed Gondwanan ancestry and some shared similarities of the chromosomes, skull, vertebral column, inner ear, urinary bladder (absence) and oral glands (Bellairs & Underwood 1950; Rieppel 1988).

4. DISCUSSION

The exclusion here of snakes from varanoids underlines the marine hypothesis of snake origins because it breaks the proposed transition from marine squamate reptiles (mosasaurs) to early marine snakes (pachyphoids) (Caldwell & Lee 1997; Lee 1997; Lee & Caldwell 2000). Based on morphology, the mosasauroïds are closely associated with varanoids, while the pachyphoids are closely associated with living snakes (either basal or derived within Alethinophidia) (Baur 1890; Camp 1923; McDowell & Bogert 1954; Carroll & deBraga 1992; deBraga & Carroll 1993; Lee 1997; Lee et al. 1999;Lee & Caldwell 2000; Rieppel & Zaher 2000b; Tchernov et al. 2000), implying two independent terrestrial to marine transitions under this new phylogenetic scheme (figure 2).

By itself, a morphological connection between snakes and varanoids was not robust because snakes are so highly modified that they cannot be coded for some characters diagnostic of varanoids and they lack a unique character of varanoids (a surangular with a blunt anterior tip) (Lee 1997). Likewise, a close relationship between snakes and mosasaurs also was not well supported. Similarities in the structure of their jaws, such as the intramandibular joint, have been shown to be convergent (Rieppel & Zaher 2000b) and other presumed shared traits have been questioned (Fraser 1997; Zaher & Rieppel 1999; Rieppel & Zaher 2000a; Rieppel et al. 2003). Of course, without a mosasauroïd–varanoid link, the disassociation of snakes and varanoids would not challenge the marine hypothesis. However, with rare exceptions (Caldwell et al. 1995; Caldwell 1999), morphological analyses have unambiguously supported a close relationship between mosasaurs and varanoids (Baur 1890; Camp 1923; Nopcsa 1923; McDowell & Bogert 1954; Russell 1967; Carroll & deBraga 1992; deBraga & Carroll 1993; Lee 1997; Lee et al. 1999; Lee & Caldwell 2000; Rieppel & Zaher 2000b).

The current molecular evidence (figure 1) is unable to clarify all of the branches of the squamate phylogenetic tree or robustly identify the closest lineage to snakes, except to exclude varanoids, amphisbaenians and probably dibamids (assuming the association of the latter with
skinks). Nonetheless, the significant exclusion of snakes from varanoids is in itself sufficient to support a terrestrial origin of snakes, because no other marine connection has been suggested or is likely. This is true regardless of the affinities of snakes among remaining lineages of squamates. Within the terrestrial environment, the origin of snakes has been most often associated with the underground niche by drawing parallels with characteristics of burrowing (fossorial) lizards. However, it has been debated as to whether the ancestors of snakes were fully fossorial and constructed their own burrows or were semi-fossorial and occupied burrows constructed by other animals (Camp 1923; Walls 1940; Bellairs & Underwood 1950; Rieppel 1988). Further insight into this question, and the evolution of the locomotor and feeding systems of snakes in general, may come with a more robust phylogeny of squamates and additional Mesozoic fossils.

Acknowledgements


